This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368773 #17 Jul 09 2024 19:41:23 %S A368773 1,1,3,7,21,53,159,419,1257,3401,10203,28095,84285,235005,705015, %T A368773 1984155,5952465,16873745,50621235,144327287,432981861,1240296773, %U A368773 3720890319,10700364691,32101094073,92619680089,277859040267,803956981807,2411870945421,6995553520653,20986660561959,61001041404555 %N A368773 Antidiagonal sums of A059450. %F A368773 Apparent g.f.: (-b-sqrt(b^2-4*a*c))/(2*a) where a=(6*x^2 - 2*x), b=(-3*x^2 + 4*x - 1), and c=(-x + 1). [determined with Pari's seralgdep()] %F A368773 Conjecture: D-finite with recurrence +(n+1)*a(n) +3*(-1)*a(n-1) +(-10*n+11)*a(n-2) +3*a(n-3) +9*(n-4)*a(n-4)=0. - _R. J. Mathar_, Mar 25 2024 %p A368773 A368773 := proc(n) %p A368773 add(A059450(n-j,j), j=0..floor(n/2)) ; %p A368773 end proc: %p A368773 seq(A368773(n),n=0..40) ; # _R. J. Mathar_, Mar 25 2024 %o A368773 (PARI) %o A368773 N=32; M=matrix(N+1, N+1); M[1,1] = 1; %o A368773 T(n,k)= return( M[n+1,k+1] ); %o A368773 { \\ A059450 %o A368773 for (n=1, N, %o A368773 for (k=0, n, %o A368773 v = sum(y=0, n-1, T(y, k) ); \\ vert sum from top %o A368773 h = sum(y=0, n-1, T(n, y) ); \\ horiz sum from left %o A368773 s = v + h; %o A368773 M[ n+1, k+1 ] = s; %o A368773 ); %o A368773 ); } %o A368773 \\ antidiagonal sums: %o A368773 for (n=0, N, my(r=n,c=0, s=0); while( c<=r, s+=T(r,c); r-=1; c+=1 ); print1(s,", ")); %Y A368773 Cf. A059450. %K A368773 nonn %O A368773 0,3 %A A368773 _Joerg Arndt_, Jan 05 2024