This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368779 #16 Sep 21 2024 14:47:41 %S A368779 0,1,1,2,1,2,1,2,2,1,3,1,2,2,1,3,1,3,2,2,1,2,2,3,1,3,1,2,2,2,4,1,2,2, %T A368779 1,3,1,3,3,2,1,2,3,2,3,1,2,2,2,1,4,1,2,3,2,3,1,3,2,3,1,1,2,3,3,2,3,1, %U A368779 2,1,4,2,2,2,1,4,2,3,2,2,2,1,3,3,4,1,3 %N A368779 The number of prime factors of the cubefree numbers, counted with multiplicity. %H A368779 Amiram Eldar, <a href="/A368779/b368779.txt">Table of n, a(n) for n = 1..10000</a> %H A368779 Rafael Jakimczuk and Matilde Lalín, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Lalin/lalin2.html">The Number of Prime Factors on Average in Certain Integer Sequences</a>, Journal of Integer Sequences, Vol. 25 (2022), Article 22.2.3. %F A368779 a(n) = A001222(A004709(n)). %F A368779 Sum_{A004709(k) <= x} a(k) = (1/zeta(3)) * x * log(log(x)) + O(x) (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024] %t A368779 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], Total[e], Nothing]]; f[1] = 0; Array[f, 100] %o A368779 (PARI) lista(max) = {my(e); for(k = 1, max, e = factor(k)[,2]; if(k == 1 || vecmax(e) < 3, print1(vecsum(e), ", ")));} %o A368779 (Python) %o A368779 from sympy import mobius, integer_nthroot, primeomega %o A368779 def A368779(n): %o A368779 def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) %o A368779 m, k = n, f(n) %o A368779 while m != k: %o A368779 m, k = k, f(k) %o A368779 return primeomega(m) # _Chai Wah Wu_, Aug 06 2024 %Y A368779 Cf. A001222, A004709, A072047. %K A368779 nonn,easy %O A368779 1,4 %A A368779 _Amiram Eldar_, Jan 05 2024