cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368779 The number of prime factors of the cubefree numbers, counted with multiplicity.

This page as a plain text file.
%I A368779 #16 Sep 21 2024 14:47:41
%S A368779 0,1,1,2,1,2,1,2,2,1,3,1,2,2,1,3,1,3,2,2,1,2,2,3,1,3,1,2,2,2,4,1,2,2,
%T A368779 1,3,1,3,3,2,1,2,3,2,3,1,2,2,2,1,4,1,2,3,2,3,1,3,2,3,1,1,2,3,3,2,3,1,
%U A368779 2,1,4,2,2,2,1,4,2,3,2,2,2,1,3,3,4,1,3
%N A368779 The number of prime factors of the cubefree numbers, counted with multiplicity.
%H A368779 Amiram Eldar, <a href="/A368779/b368779.txt">Table of n, a(n) for n = 1..10000</a>
%H A368779 Rafael Jakimczuk and Matilde Lalín, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Lalin/lalin2.html">The Number of Prime Factors on Average in Certain Integer Sequences</a>, Journal of Integer Sequences, Vol. 25 (2022), Article 22.2.3.
%F A368779 a(n) = A001222(A004709(n)).
%F A368779 Sum_{A004709(k) <= x} a(k) = (1/zeta(3)) * x * log(log(x)) + O(x) (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
%t A368779 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], Total[e], Nothing]]; f[1] = 0; Array[f, 100]
%o A368779 (PARI) lista(max) = {my(e); for(k = 1, max, e = factor(k)[,2]; if(k == 1 || vecmax(e) < 3, print1(vecsum(e), ", ")));}
%o A368779 (Python)
%o A368779 from sympy import mobius, integer_nthroot, primeomega
%o A368779 def A368779(n):
%o A368779     def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
%o A368779     m, k = n, f(n)
%o A368779     while m != k:
%o A368779         m, k = k, f(k)
%o A368779     return primeomega(m) # _Chai Wah Wu_, Aug 06 2024
%Y A368779 Cf. A001222, A004709, A072047.
%K A368779 nonn,easy
%O A368779 1,4
%A A368779 _Amiram Eldar_, Jan 05 2024