A368781 The maximal exponent in the unique factorization of n in terms of distinct "Fermi-Dirac primes".
0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1
Examples
For n = 972 = 2^2 * 3^5, the unique factorization of 972 in terms of distinct "Fermi-Dirac primes" is 2^(2^1) * 3^(2^0) * 3^(2^2). Therefore, a(972) = 2^2 = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Wikipedia, Fermi-Dirac prime.
Crossrefs
Programs
-
Mathematica
a[n_] := 2^Floor[Log2[Max[FactorInteger[n][[;; , 2]]]]]; a[1] = 0; Array[a, 100]
-
PARI
a(n) = if(n > 1, 2^exponent(vecmax(factor(n)[, 2])), 0);
-
Python
from sympy import factorint def A368781(n): return 1<
1 else 0 # Chai Wah Wu, Apr 11 2025
Comments