This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368785 #13 May 25 2025 19:48:03 %S A368785 1559,4073,5237,5987,12119,14633,24697,29881,29947,30113,32003,41903, %T A368785 45863,60169,64817,67601,69151,71263,73783,77713,78929,79633,86629, %U A368785 88547,91493,95483,96181,108037,109859,110459,111667,125471,132833,133283,140419,142049,160001,165133,170579,171803,171827,171947 %N A368785 Least of three consecutive primes p, q, r such that p + q, p + r, q + r and p + q + r all have the same number of prime divisors, counted with multiplicity. %C A368785 The number of prime divisors is at least 3, because p + q is even and not twice a prime. %H A368785 Robert Israel, <a href="/A368785/b368785.txt">Table of n, a(n) for n = 1..10000</a> %e A368785 a(2) = 4073 is a term because 4073, 4079, 4091 are consecutive primes with %e A368785 4073 + 4079 = 8152 = 2^3 * 1019, %e A368785 4073 + 4091 = 8164 = 2^2 * 13 * 157, %e A368785 4079 + 4091 = 8170 = 2 * 5 * 19 * 43, and %e A368785 4073 + 4079 + 4091 = 12243 = 3 * 7 * 11 * 53 %e A368785 all have 4 prime divisors, counted with multiplicity. %p A368785 R:= NULL: count:= 0: %p A368785 p:= 2: q:= 3: r:= 5: v:= numtheory:-bigomega(q+r); %p A368785 while count < 100 do %p A368785 p:= q; q:= r; r:= nextprime(r); %p A368785 w:= numtheory:-bigomega(q+r); %p A368785 if w = v and numtheory:-bigomega(p+r) = v and numtheory:-bigomega(p+q+r) = v then %p A368785 R:= R,p; count:= count+1; %p A368785 fi; %p A368785 v:= w; %p A368785 od: %p A368785 R; %t A368785 Select[Partition[Prime[Range[16000]],3,1],Length[Union[PrimeOmega[Total/@Subsets[#,{2,3}]]]]==1&][[;;,1]] (* _Harvey P. Dale_, May 25 2025 *) %Y A368785 Cf. A001222, A368786. %K A368785 nonn %O A368785 1,1 %A A368785 _Zak Seidov_ and _Robert Israel_, Jan 05 2024