A368831 Irregular triangle read by rows: T(n,k) is the number of dominating subsets with cardinality k of the n X n rook graph (n >= 0, 0 <= k <= n^2).
1, 0, 1, 0, 0, 6, 4, 1, 0, 0, 0, 48, 117, 126, 84, 36, 9, 1, 0, 0, 0, 0, 488, 2640, 6712, 10864, 12726, 11424, 8008, 4368, 1820, 560, 120, 16, 1, 0, 0, 0, 0, 0, 6130, 58300, 269500, 808325, 1778875, 3075160, 4349400, 5154900, 5186300, 4454400, 3268360, 2042950, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1
Offset: 0
Examples
Triangle begins: (first 5 rows) 1; 0, 1; 0, 0, 6, 4, 1; 0, 0, 0, 48, 117, 126, 84, 36, 9, 1; 0, 0, 0, 0, 488, 2640, 6712, 10864, 12726, 11424, 8008, 4368, 1820, 560, 120, 16, 1; ...
References
- John J. Watkins, Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, 2004, chapter 7.
Links
- Alois P. Heinz, Rows n = 0..32, flattened
- Stephan Mertens, Domination Polynomial of the Rook Graph, Journal of Integer Sequences 27 (2024), Article 24.3.7; arXiv:2401.00716 [math.CO], 2024.
- Eric Weisstein's World of Mathematics, Dominating Set.
- Eric Weisstein's World of Mathematics, Rook Graph.
Programs
-
Mathematica
R[n_, m_] := CoefficientList[((x + 1)^n - 1)^m - (-1)^m*Sum[Binomial[m, k]*(-1)^k*((1 + x)^k - 1)^n, {k, 0, m - 1}], x]; Flatten[Table[R[n,n],{n,1,5}]]
Formula
G.f.: ((x+1)^n - 1)^m - (-1)^m * Sum_{k=0..m-1} binomial(m,k)*(-1)^k*((1+x)^k - 1)^n (for the rectangular n X m rook graph).
T(n,n) = 2*n^n - n!.
Comments