This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368832 #6 Jan 07 2024 09:44:47 %S A368832 36,60,72,84,100,108,120,132,140,144,156,168,180,196,200,204,216,220, %T A368832 225,228,240,252,260,264,276,280,288,300,308,312,315,324,336,340,348, %U A368832 360,364,372,380,392,396,400,408,420,432,440,441,444,450,456,460,468,476,480,484,492,495,500,504,516,520,525,528,532,540,552 %N A368832 Integers not of one of the 5 forms p^k, p*q^k, 2*p*q^k, p*q*r or 2*p*q*r with p, q, r distinct primes and k>=0. %C A368832 Cyclic groups of these orders cannot be Schur groups, see the Theorem by [Evdokimov et al.]. %H A368832 S. Evdokimov, I. Kovacs, and I. Ponomarenko, <a href="https://doi.org/10.101080/00927872.2024.958848">On Schurity of Finite Abelian Groups</a>, Comm. Algebra 44 (2016) 101-117, see the Cyclic Schur Group Theorem. %p A368832 isA007304 := proc(n) %p A368832 if bigomega(n) = 3 and A001221(n) =3 then %p A368832 true; %p A368832 else %p A368832 false ; %p A368832 end if; %p A368832 end proc: %p A368832 # list of prime exponents %p A368832 pexp := proc(n) %p A368832 local e,pe ; %p A368832 e := [] ; %p A368832 for pe in ifactors(n)[2] do %p A368832 e := [op(e),op(2,pe)] ; %p A368832 end do: %p A368832 e ; %p A368832 end proc: %p A368832 isCycSchGr := proc(n) %p A368832 local om,nhalf ,pe; %p A368832 om := A001221(n) ; %p A368832 if om > 4 then %p A368832 return false; %p A368832 elif om = 4 then %p A368832 # require 2*p*q*r %p A368832 if type(n,'even') and type(n/2,'odd') then %p A368832 nhalf := n/2 ; %p A368832 # require nhalf =p*q*r in A007304 %p A368832 return isA007304(nhalf) ; %p A368832 else %p A368832 false; %p A368832 end if; %p A368832 elif om = 3 then %p A368832 # require p*q*r or 2*p*q^k %p A368832 if type(n,'even') and type(n/2,'odd') then %p A368832 nhalf := n/2 ; %p A368832 # require nhalf =p*q^k %p A368832 pe := pexp(nhalf) ; %p A368832 if nops(pe) =2 and 1 in convert(pe,set) then %p A368832 true; %p A368832 else %p A368832 false ; %p A368832 end if; %p A368832 elif type(n,'odd') then %p A368832 # require n =p*q*r %p A368832 if isA007304(n) then %p A368832 true; %p A368832 else %p A368832 false ; %p A368832 end if; %p A368832 else %p A368832 false; %p A368832 end if; %p A368832 elif om = 2 then %p A368832 # require p*q^k %p A368832 pe := pexp(n) ; %p A368832 if 1 in convert(pe,set) then %p A368832 true; %p A368832 else %p A368832 false; %p A368832 end if; %p A368832 else %p A368832 # p^k, k>=0 %p A368832 true ; %p A368832 end if; %p A368832 end proc: %p A368832 for n from 1 to 3000 do %p A368832 if not isCycSchGr(n) then %p A368832 printf("%d,",n) ; %p A368832 end if; %p A368832 end do: %Y A368832 Cf. A051270 (subsequence), A036785 (subsequence), A074969 (subsequence). %K A368832 nonn,easy %O A368832 1,1 %A A368832 _R. J. Mathar_, Jan 07 2024