This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368833 #6 Jan 08 2024 14:30:24 %S A368833 19,37,38,53,57,61,71,74,76,89,95,103,106,107,111,113,114,122,131,133, %T A368833 142,148,151,152,159,171,173,178,181,183,185,190,193,197,206,209,212, %U A368833 213,214,222,223,226,228,229,239,244,247,251,259,262,263,265,266,267 %N A368833 Numbers whose prime indices are not 1, prime, or semiprime. %C A368833 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A368833 The terms together with their prime indices begin: %e A368833 19: {8} %e A368833 37: {12} %e A368833 38: {1,8} %e A368833 53: {16} %e A368833 57: {2,8} %e A368833 61: {18} %e A368833 71: {20} %e A368833 74: {1,12} %e A368833 76: {1,1,8} %e A368833 89: {24} %e A368833 95: {3,8} %e A368833 103: {27} %e A368833 106: {1,16} %e A368833 107: {28} %e A368833 111: {2,12} %e A368833 113: {30} %e A368833 114: {1,2,8} %e A368833 122: {1,18} %e A368833 131: {32} %e A368833 133: {4,8} %e A368833 142: {1,20} %e A368833 148: {1,1,12} %t A368833 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A368833 Select[Range[100], Max@@PrimeOmega/@prix[#]>2&] %Y A368833 These are non-products of primes indexed by elements of A037143. %Y A368833 The complement for just primes is A076610, strict A302590. %Y A368833 The complement for just semiprimes is A339112, strict A340020. %Y A368833 The complement for just squarefree semiprimes is A339113, strict A309356. %Y A368833 The complement is A368728. %Y A368833 The complement for just primes and semiprimes is A368729, strict A340019. %Y A368833 A000607 counts partitions into primes, with ones allowed A034891. %Y A368833 A001358 lists semiprimes, squarefree A006881. %Y A368833 A006450, A106349, A322551, A368732 list selected primes. %Y A368833 A056239 adds up prime indices, row sums of A112798. %Y A368833 A101048 counts partitions into semiprimes. %Y A368833 Cf. A000040, A000720, A001222, A003963, A005117, A302242, A320628. %K A368833 nonn %O A368833 1,1 %A A368833 _Gus Wiseman_, Jan 08 2024