cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368833 Numbers whose prime indices are not 1, prime, or semiprime.

This page as a plain text file.
%I A368833 #6 Jan 08 2024 14:30:24
%S A368833 19,37,38,53,57,61,71,74,76,89,95,103,106,107,111,113,114,122,131,133,
%T A368833 142,148,151,152,159,171,173,178,181,183,185,190,193,197,206,209,212,
%U A368833 213,214,222,223,226,228,229,239,244,247,251,259,262,263,265,266,267
%N A368833 Numbers whose prime indices are not 1, prime, or semiprime.
%C A368833 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A368833 The terms together with their prime indices begin:
%e A368833    19: {8}
%e A368833    37: {12}
%e A368833    38: {1,8}
%e A368833    53: {16}
%e A368833    57: {2,8}
%e A368833    61: {18}
%e A368833    71: {20}
%e A368833    74: {1,12}
%e A368833    76: {1,1,8}
%e A368833    89: {24}
%e A368833    95: {3,8}
%e A368833   103: {27}
%e A368833   106: {1,16}
%e A368833   107: {28}
%e A368833   111: {2,12}
%e A368833   113: {30}
%e A368833   114: {1,2,8}
%e A368833   122: {1,18}
%e A368833   131: {32}
%e A368833   133: {4,8}
%e A368833   142: {1,20}
%e A368833   148: {1,1,12}
%t A368833 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A368833 Select[Range[100], Max@@PrimeOmega/@prix[#]>2&]
%Y A368833 These are non-products of primes indexed by elements of A037143.
%Y A368833 The complement for just primes is A076610, strict A302590.
%Y A368833 The complement for just semiprimes is A339112, strict A340020.
%Y A368833 The complement for just squarefree semiprimes is A339113, strict A309356.
%Y A368833 The complement is A368728.
%Y A368833 The complement for just primes and semiprimes is A368729, strict A340019.
%Y A368833 A000607 counts partitions into primes, with ones allowed A034891.
%Y A368833 A001358 lists semiprimes, squarefree A006881.
%Y A368833 A006450, A106349, A322551, A368732 list selected primes.
%Y A368833 A056239 adds up prime indices, row sums of A112798.
%Y A368833 A101048 counts partitions into semiprimes.
%Y A368833 Cf. A000040, A000720, A001222, A003963, A005117, A302242, A320628.
%K A368833 nonn
%O A368833 1,1
%A A368833 _Gus Wiseman_, Jan 08 2024