A368834 Number of unlabeled simple graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).
1, 0, 1, 2, 5, 10, 27, 62, 165, 423, 1140, 3060, 8427, 23218, 64782, 181370, 511004, 1444285, 4097996, 11656644, 33243265, 94992847, 271953126, 779790166, 2239187466, 6438039076, 18532004323, 53400606823, 154024168401, 444646510812, 1284682242777
Offset: 0
Keywords
Examples
Representatives of the a(2) = 1 through a(5) = 10 simple graphs: {12} {12}{13} {12}{34} {12}{13}{45} {12}{13}{23} {12}{13}{14} {12}{13}{14}{15} {12}{13}{24} {12}{13}{14}{25} {12}{13}{14}{23} {12}{13}{23}{45} {12}{13}{24}{34} {12}{13}{24}{35} {12}{13}{14}{15}{23} {12}{13}{14}{23}{25} {12}{13}{14}{23}{45} {12}{13}{14}{25}{35} {12}{13}{24}{35}{45}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
The complement is counted by A369202.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}]