cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368845 Number of solutions to +- 1^3 +- 2^3 +- 3^3 +- ... +- n^3 = n^3.

This page as a plain text file.
%I A368845 #12 Jan 25 2024 08:03:18
%S A368845 1,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,6,4,0,0,8,187,0,0,831,1086,0,0,7127,
%T A368845 3983,0,0,20086,120445,0,0,674006,1056938,0,0,6983613,5964500,0,0,
%U A368845 40031490,142694311,0,0,853687222,1622335105,0,0,10288998770,12509111104
%N A368845 Number of solutions to +- 1^3 +- 2^3 +- 3^3 +- ... +- n^3 = n^3.
%F A368845 a(n) = [x^(n^3)] Product_{k=1..n} (x^(k^3) + 1/x^(k^3)).
%p A368845 b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
%p A368845       b(abs(n-i^3), i-1) +b(n+i^3, i-1))))((i*(i+1)/2)^2)
%p A368845     end:
%p A368845 a:= n-> `if`(irem(n, 4)>1, 0, b(n^3, n)):
%p A368845 seq(a(n), n=0..53);  # _Alois P. Heinz_, Jan 22 2024
%Y A368845 Cf. A063890, A158118, A348892.
%K A368845 nonn
%O A368845 0,14
%A A368845 _Ilya Gutkovskiy_, Jan 22 2024