A368846 Triangle read by rows: T(n, k) = (-1)^(n + k)*2*binomial(2*k - 1, n)* binomial(2*n + 1, 2*k) for k > 0, and k^n for k = 0.
1, 0, 6, 0, 0, 30, 0, 0, -70, 140, 0, 0, 0, -840, 630, 0, 0, 0, 924, -6930, 2772, 0, 0, 0, 0, 18018, -48048, 12012, 0, 0, 0, 0, -12870, 216216, -300300, 51480, 0, 0, 0, 0, 0, -350064, 2042040, -1750320, 218790, 0, 0, 0, 0, 0, 184756, -5542680, 16628040, -9699690, 923780
Offset: 0
Examples
[0] [1] [1] [0, 6] [2] [0, 0, 30] [3] [0, 0, -70, 140] [4] [0, 0, 0, -840, 630] [5] [0, 0, 0, 924, -6930, 2772] [6] [0, 0, 0, 0, 18018, -48048, 12012] [7] [0, 0, 0, 0, -12870, 216216, -300300, 51480] [8] [0, 0, 0, 0, 0, -350064, 2042040, -1750320, 218790]
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
- Thomas Curtright, Scale Invariant Scattering and the Bernoulli Numbers, arXiv:2401.00586 [math-ph], Jan 2024.
- Thomas L. Curtright, Bernoulli Partitions, arXiv:2502.09633 [math.CO], 2025.
Crossrefs
Programs
-
Mathematica
A368846[n_,k_] := If[k==0, Boole[n==0], (-1)^(n+k) 2 Binomial[2k-1, n] Binomial[2n+1, 2k]]; Table[A368846[n, k], {n,0,10}, {k,0,n}] (* Paolo Xausa, Jan 08 2024 *)
-
SageMath
def A368846(n, k): if k == 0: return k^n if k > n: return 0 return (-1)^(n + k)*2*binomial(2*k - 1, n)*binomial(2*n + 1, 2*k) for n in range(10): print([A368846(n, k) for k in range(n+1)])
Comments