A368848 Triangle read by rows: T(n, k) = denominator(M(n, k)) where M is the inverse matrix of A368846.
1, 1, 6, 1, 1, 30, 1, 1, 60, 140, 1, 1, 45, 105, 630, 1, 1, 20, 140, 252, 2772, 1, 1, 6, 14, 1260, 693, 12012, 1, 1, 900, 2100, 945, 5940, 10296, 51480, 1, 1, 3, 1, 945, 189, 1287, 6435, 218790, 1, 1, 100, 700, 420, 660, 12012, 780, 145860, 923780
Offset: 0
Examples
Triangle starts: [0] [1] [1] [1, 6] [2] [1, 1, 30] [3] [1, 1, 60, 140] [4] [1, 1, 45, 105, 630] [5] [1, 1, 20, 140, 252, 2772] [6] [1, 1, 6, 14, 1260, 693, 12012] [7] [1, 1, 900, 2100, 945, 5940, 10296, 51480] [8] [1, 1, 3, 1, 945, 189, 1287, 6435, 218790]
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
- Thomas Curtright, Scale Invariant Scattering and the Bernoulli Numbers, arXiv:2401.00586 [math-ph], Jan 2024.
Crossrefs
Programs
-
Mathematica
A368846[n_,k_] := If[k==0, Boole[n==0], (-1)^(n+k) 2 Binomial[2k-1,n] Binomial[2n+1, 2k]]; Denominator[MapIndexed[Take[#,First[#2]]&, Inverse[PadRight[Table[ A368846[n, k], {n,0,10},{k,0,n}]]]]] (* Paolo Xausa, Jan 08 2024 *)
-
SageMath
M = matrix(ZZ, 10, 10, lambda n, k: A368846(n, k) if k <= n else 0) I = M.inverse() for n in range(9): print([I[n][k].denominator() for k in range(n+1)])
Comments