This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368849 #23 Apr 26 2025 20:53:34 %S A368849 0,0,0,0,2,0,0,18,6,0,0,192,72,48,0,0,2500,960,720,540,0,0,38880, %T A368849 15000,11520,9720,7680,0,0,705894,272160,210000,181440,161280,131250, %U A368849 0,0,14680064,5647152,4354560,3780000,3440640,3150000,2612736,0 %N A368849 Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k). %C A368849 A motivation for this triangle was to provide an alternative sum representation for A001864(n) = n! * Sum_{k=0..n-2} n^k/k!. See formula 3 and formula 15 in Riordan and Sloane. %H A368849 John Riordan and N. J. A. Sloane, <a href="http://dx.doi.org/10.1017/S1446788700007527">Enumeration of rooted trees by total height</a>, J. Austral. Math. Soc., vol. 10 pp. 278-282, 1969. %e A368849 Triangle starts: %e A368849 [0] [0] %e A368849 [1] [0, 0] %e A368849 [2] [0, 2, 0] %e A368849 [3] [0, 18, 6, 0] %e A368849 [4] [0, 192, 72, 48, 0] %e A368849 [5] [0, 2500, 960, 720, 540, 0] %e A368849 [6] [0, 38880, 15000, 11520, 9720, 7680, 0] %e A368849 [7] [0, 705894, 272160, 210000, 181440, 161280, 131250, 0] %e A368849 [8] [0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0] %t A368849 A368849[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k); %t A368849 Table[A368849[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 13 2024 *) %o A368849 (SageMath) %o A368849 def T(n, k): %o A368849 return binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k) %o A368849 for n in range(0, 9): print([n], [T(n, k) for k in range(n + 1)]) %Y A368849 T(n, 1) = A066274(n) for n >= 1. %Y A368849 T(n, 1)/(n - 1) = A000169(n) for n >= 2. %Y A368849 T(n, n - 1) = 2*A081133(n) for n >= 1. %Y A368849 Sum_{k=0..n} T(n, k) = A001864(n). %Y A368849 (Sum_{k=0..n} T(n, k)) / n = A000435(n) for n >= 1. %Y A368849 (Sum_{k=0..n} T(n, k)) * n / 2 = A262973(n) for n >= 1. %Y A368849 (Sum_{k=2..n} T(n, k)) / (2*n) = A057500(n) for n >= 1. %Y A368849 T(n, 1)/(n - 1) + (Sum_{k=2..n} T(n, k)) / (2*n) = A368951(n) for n >= 2. %Y A368849 Sum_{k=0..n} (-1)^(k-1) * T(n, k) = A368981(n). %K A368849 nonn,tabl %O A368849 0,5 %A A368849 _Peter Luschny_, Jan 11 2024