cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368857 a(n) gives the maximum number of equally spaced equal digits in the binary expansion of n (without leading zeros).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 4, 4, 3, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 6, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 4, 4, 3, 2, 2, 3, 4, 3
Offset: 0

Views

Author

Rémy Sigrist, Jan 08 2024

Keywords

Comments

This sequence diverges to infinity by Van der Waerden's theorem.

Crossrefs

Cf. A368841.

Programs

  • PARI
    a(n, base = 2) = { my (b = digits(n, base), v = if (n, 1, 0)); for (i = 1, #b-1, for (j = i+1, #b, if (b[i]==b[j], my (d = j-i, k = j); while (k + d <= #b && b[k + d]==b[i], k += d;); v = max(v, 1 + (k-i) / d);););); return (v); }
    
  • Python
    def A368857(n):
        if n == 0: return 0
        l = len(s:=bin(n)[2:])
        return 1+max((k-1-i)//j for i in range(l) for j in range(1,l-i+3>>1) for k in range(i+1,l+1,j) if len(set(s[i:k:j]))==1) # Chai Wah Wu, Jan 10 2024

Formula

a(2^k) = k for any k > 0.
a(2^k - 1) = k for any k >= 0.
a(2*n) >= a(n).