cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368862 Numerators of an infinite series that converges to the negative inverse of Backhouse's constant (A088751).

This page as a plain text file.
%I A368862 #20 Jan 08 2025 11:43:32
%S A368862 -1,-3,1,1,-1,5,-19,-9,41,-103,17,289,-169,331,-689,-4991,3999,7833,
%T A368862 -6509,21827,-22165,-87637,119441,-190981,-152513,1482023,-425985,
%U A368862 -1045091,1071237,-14108791,5845271,39852203,-35832801,54451699,44061359,-435442725,261309855,-22217917
%N A368862 Numerators of an infinite series that converges to the negative inverse of Backhouse's constant (A088751).
%C A368862 Whittaker's root series formula is applied to 1 + Sum_{k>=1} prime(k) x^k. The following infinite series that converges to the negative inverse of Backhouse's constant (-x) is obtained:
%C A368862 x = -1/(1*2) - 3/(2*1) + 1/(1*1) + 1/(1*2) - 1/(2*3) + 5/(3*7) - 19/(7*10) - 9/(10*13) + 41/(13*21) - 103/(21*26) + 17/(26*33) + 289/(33*53) ...
%C A368862 The denominators of the infinite series are obtained by multiplying the absolute values of 2 consecutive terms from the sequence A030018.
%H A368862 E. T. Whittaker and G. Robinson, <a href="https://archive.org/details/calculusofobserv031400mbp/page/n139/mode/2up">The Calculus of Observations</a>, London: Blackie & Son, Ltd. 1924, pp. 120-123.
%F A368862 a(1) = -1.
%F A368862 For n > 1, a(n) = -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n))), where c(0)=1 and c(n) is the n-th prime number.
%e A368862 a(1) = -1;
%e A368862 a(2) = -3;
%e A368862 a(3) = -det ToeplitzMatrix((3,2),(3,5)) = 1;
%e A368862 a(4) = -det ToeplitzMatrix((3,2,1),(3,5,7)) = 1;
%e A368862 a(5) = -det ToeplitzMatrix((3,2,1,0),(3,5,7,11)) = -1;
%e A368862 a(6) = -det ToeplitzMatrix((3,2,1,0,0),(3,5,7,11,13)) = 5;
%e A368862 a(7) = -det ToeplitzMatrix((3,2,1,0,0,0),(3,5,7,11,13,17)) = -19.
%Y A368862 Cf. A088751, A030018, A072508.
%K A368862 sign
%O A368862 1,2
%A A368862 _Raul Prisacariu_, Jan 08 2024
%E A368862 a(21)-a(38) from _Stefano Spezia_, Jan 09 2024