cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368879 Primes that are in A070196.

This page as a plain text file.
%I A368879 #18 Jan 20 2024 09:24:58
%S A368879 2,11,101,233,277,409,499,521,547,587,607,617,631,659,661,677,719,727,
%T A368879 739,743,751,769,773,787,809,827,829,839,859,863,881,883,919,929,941,
%U A368879 953,971,991,997,1009,1021,1031,1049,1051,1061,1063,1069,1087,1103,1109,1151,1163,1171,1181,1187,1193
%N A368879 Primes that are in A070196.
%C A368879 Primes p such that for some k, p = k + the sorted version of the base-10 digits of k.
%H A368879 Robert Israel, <a href="/A368879/b368879.txt">Table of n, a(n) for n = 1..10000</a>
%e A368879 a(4) = 233 is a term because 233 = A070196(121) = 121 + 112 is prime.
%e A368879 a(5) = 277 is a term in three ways: 277 = 143 + 134 = 152 + 125 = 161 + 116.
%p A368879 f:= proc(n) local L,i;
%p A368879     L:= sort(convert(n,base,10),`>`);
%p A368879     add(L[i]*10^(i-1),i=1..nops(L)) + n;
%p A368879 end proc:
%p A368879 select(t -> t < 10000 and isprime(t), map(f, {$1..9999}));
%o A368879 (Python)
%o A368879 from sympy import isprime
%o A368879 def aupto(LIMIT):
%o A368879     cands = set(k + int("".join(sorted(str(k)))) for k in range(LIMIT))
%o A368879     return sorted(k for k in cands if k <= LIMIT and isprime(k))
%o A368879 print(aupto(1200)) # _Michael S. Branicky_, Jan 15 2024
%Y A368879 Cf. A070196.
%K A368879 nonn,base
%O A368879 1,1
%A A368879 _Robert Israel_, Jan 15 2024