cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368885 The number of unitary divisors of n that are squares of a squarefree number (A062503).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2024

Keywords

Comments

First differs from A294932 at n = 32.
The largest of these divisors is A368884(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x->if(x==2, 2, 1), factor(n)[, 2]));
    
  • Python
    from sympy import factorint
    def A368885(n): return 1<Chai Wah Wu, Jan 09 2024

Formula

Multiplicative with a(p^e) = 2 if e = 2, and 1 otherwise.
a(n) >= 1, with equality if and only if n is in A337050.
a(n) <= A034444(n), with equality if and only if n is in A062503.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s) - 1/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.30596827416754083231... .