This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368923 #44 Aug 06 2024 09:57:48 %S A368923 2,2,5,5,13,8,16,11,19,14,22,17,25,20,28,23,31,26,34,29,37,32,40,35, %T A368923 43,38,46,41,49,44,52,47,55,50,58,53,61,56,64,59,67,62,70,65,73,68,76, %U A368923 71,79,74,82,77,85,80,88,83,91,86,94,89,97,92,100,95,103,98,106,101,109 %N A368923 Number of congruences of the 0-twisted Brauer monoid of degree n. %H A368923 Paolo Xausa, <a href="/A368923/b368923.txt">Table of n, a(n) for n = 0..10000</a> %H A368923 J. East and N. Ruškuc, <a href="https://doi.org/10.1016/j.aim.2021.108097">Classification of congruences of twisted partition monoids</a>, Advances in Mathematics, 395 (2022); <a href="https://arxiv.org/abs/2010.04392">arXiv version</a>, arXiv:2010.04392 [math.RA], 2020. %H A368923 J. East, J. Mitchell, N. Ruškuc and M. Torpey, <a href="https://doi.org/10.1016/j.aim.2018.05.016">Congruence lattices of finite diagram monoids</a>, Advances in Mathematics, 333 (2018), 931-1003; <a href="https://arxiv.org/abs/1709.00142">arXiv version</a>, arXiv:1709.00142 [math.GR], 2018. %H A368923 Matthias Fresacher, <a href="https://www.youtube.com/watch?v=kEovBqAQxPU">Congruence Lattices of Finite Twisted Brauer Monoids</a>, youtube video (2023). %H A368923 Matthias Fresacher, <a href="https://www.youtube.com/watch?v=YPiSVZY1z7k">(10min B&TL) Congruence Lattices of Finite Twisted Brauer & Temperley-Lieb Monoids-MatthiasFresacher</a>, youtube video (2024). %H A368923 Matthias Fresacher, <a href="https://www.youtube.com/watch?v=X9hDw0vNxYA">(50min B&TL) Congruence Lattices of Finite Twisted Brauer & Temperley-Lieb Monoids-MatthiasFresacher</a>, youtube video (2024). %H A368923 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A368923 a(n) = (3*n + 1)/2 if n is odd. %F A368923 a(n) = (3*n + 14)/2 if n is even and n >= 4. %F A368923 a(n) = a(n-2) + 3 for n >= 5. %F A368923 G.f.: -(5*x^5-5*x^4-x^2-2)/((x+1)*(x-1)^2). %F A368923 a(n) = A147677(n+1) for n >= 3. %t A368923 LinearRecurrence[{1, 1, -1}, {2, 2, 5, 5, 13, 8}, 100] (* _Paolo Xausa_, Feb 27 2024 *) %Y A368923 Essentially the same as A147677. %Y A368923 Cf. A008585. %Y A368923 Closely related to A373011. %K A368923 easy,nonn %O A368923 0,1 %A A368923 _Matthias Fresacher_, Jan 09 2024