This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368928 #18 Jan 14 2024 16:11:04 %S A368928 1,0,1,0,2,1,1,9,9,1,15,80,90,24,1,252,1050,1200,450,50,1,5005,18018, %T A368928 20475,9100,1575,90,1,116280,379848,427329,209475,46550,4410,147,1, %U A368928 3108105,9472320,10548720,5503680,1433250,183456,10584,224,1 %N A368928 Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops. %H A368928 Andrew Howroyd, <a href="/A368928/b368928.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %F A368928 T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k). %e A368928 Triangle begins: %e A368928 1 %e A368928 0 1 %e A368928 0 2 1 %e A368928 1 9 9 1 %e A368928 15 80 90 24 1 %e A368928 252 1050 1200 450 50 1 %e A368928 5005 18018 20475 9100 1575 90 1 %e A368928 The loop-graphs counted in row n = 3 (loops shown as singletons): %e A368928 {12}{13}{23} {1}{12}{13} {1}{2}{12} {1}{2}{3} %e A368928 {1}{12}{23} {1}{2}{13} %e A368928 {1}{13}{23} {1}{2}{23} %e A368928 {2}{12}{13} {1}{3}{12} %e A368928 {2}{12}{23} {1}{3}{13} %e A368928 {2}{13}{23} {1}{3}{23} %e A368928 {3}{12}{13} {2}{3}{12} %e A368928 {3}{12}{23} {2}{3}{13} %e A368928 {3}{13}{23} {2}{3}{23} %t A368928 Table[Length[Select[Subsets[Subsets[Range[n], {1,2}],{n}],Count[#,{_}]==k&]],{n,0,5},{k,0,n}] %t A368928 T[n_,k_]:= Binomial[n,k]*Binomial[Binomial[n,2],n-k]; Table[T[n,k],{n,0,8},{k,0,n}]// Flatten (* _Stefano Spezia_, Jan 14 2024 *) %o A368928 (PARI) T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k) \\ _Andrew Howroyd_, Jan 14 2024 %Y A368928 Row sums are A014068, unlabeled version A000666. %Y A368928 Column k = 0 is A116508, covering version A367863. %Y A368928 The covering case is A368597. %Y A368928 The unlabeled version is A368836. %Y A368928 A000085, A100861, A111924 count set partitions into singletons or pairs. %Y A368928 A006125 counts graphs, unlabeled A000088. %Y A368928 A006129 counts covering graphs, unlabeled A002494. %Y A368928 A058891 counts set-systems (without singletons A016031), unlabeled A000612. %Y A368928 A322661 counts labeled covering loop-graphs, connected A062740. %Y A368928 Cf. A057500, A079491, A339065, A368596, A368927. %K A368928 nonn,tabl %O A368928 0,5 %A A368928 _Gus Wiseman_, Jan 11 2024