This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368942 #15 Feb 16 2025 08:34:06 %S A368942 2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7, %T A368942 7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9, %U A368942 9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10 %N A368942 Burning number of the n-antiprism graph. %C A368942 The n-antiprism graph is defined for n >= 3. The sequence has been extended to n=1 using the formula. - _Andrew Howroyd_, Jan 10 2024 %H A368942 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>. %H A368942 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BurningNumber.html">Burning Number</a>. %F A368942 a(n) = A204166(2*n) = A351846(2*n-1) + 1 = floor((sqrt(16*n - 1) + 1)/4) + 1. - _Andrew Howroyd_, Jan 10 2024 %t A368942 Table[Floor[(Sqrt[16 n - 1] + 5)/4], {n, 50}] %t A368942 Floor[(Sqrt[16 Range[50] - 1] + 5)/4] %o A368942 (PARI) a(n) = {1 + (sqrtint(16*n - 1) + 1)\4} \\ _Andrew Howroyd_, Jan 10 2024 %Y A368942 Cf. A156859, A204166, A351846. %K A368942 nonn %O A368942 1,1 %A A368942 _Eric W. Weisstein_, Jan 10 2024 %E A368942 a(1)-a(2) and terms a(34) and beyond from _Andrew Howroyd_, Jan 10 2024