This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368944 #18 Jan 12 2024 22:24:31 %S A368944 0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,111,121,222,242,333, %T A368944 363,444,484,555,616,666,777,888,999,1111,1221,2222,2442,3333,3663, %U A368944 4444,4884,5445,5555,6666,6776,7777,8888,9999,11111,12221,12321,22222,24442,24642 %N A368944 Palindromes in base 10 that are the product of two repdigit numbers. %C A368944 A002113 and A368955 are supersequences. %C A368944 Palindromes in base 10 of the form i*j*(10^k - 1)*(10^m - 1)/81 where 0 <= i, j <= 9 and k, m >= 0. %e A368944 121 = 11*11, 222 = 111*2, 242 = 22*11, ... %t A368944 repQ[n_] := SameQ @@ IntegerDigits[n]; q[n_] := PalindromeQ[n] && AnyTrue[Divisors[n], repQ[#] && repQ[n/#] &]; q[0] = True; Select[Range[0, 25000], q] (* _Amiram Eldar_, Jan 12 2024 *) %o A368944 (Python) %o A368944 from itertools import count, takewhile %o A368944 def ispal(n): return (s:=str(n)) == s[::-1] %o A368944 def repdigits(): %o A368944 yield 0 %o A368944 yield from ((10**d-1)//9*i for d in count(1) for i in range(1, 10)) %o A368944 def aupto(LIMIT): # use LIMIT = 10**450 for 10K+-term b-file %o A368944 s, R = set(), list(takewhile(lambda x:x<=LIMIT, repdigits())) %o A368944 for i, r1 in enumerate(R): %o A368944 for r2 in R[i:]: %o A368944 p = r1*r2 %o A368944 if p > LIMIT: break %o A368944 if ispal(p): s.add(p) %o A368944 return sorted(s) %o A368944 print(aupto(3*10**4)) # _Michael S. Branicky_, Jan 10 2024 %Y A368944 Cf. A002113, A002283, A010785 (subsequence), A368955. %K A368944 nonn,base,easy %O A368944 1,3 %A A368944 _Stefano Spezia_, Jan 10 2024