cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368944 Palindromes in base 10 that are the product of two repdigit numbers.

This page as a plain text file.
%I A368944 #18 Jan 12 2024 22:24:31
%S A368944 0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,111,121,222,242,333,
%T A368944 363,444,484,555,616,666,777,888,999,1111,1221,2222,2442,3333,3663,
%U A368944 4444,4884,5445,5555,6666,6776,7777,8888,9999,11111,12221,12321,22222,24442,24642
%N A368944 Palindromes in base 10 that are the product of two repdigit numbers.
%C A368944 A002113 and A368955 are supersequences.
%C A368944 Palindromes in base 10 of the form i*j*(10^k - 1)*(10^m - 1)/81 where 0 <= i, j <= 9 and k, m >= 0.
%e A368944 121 = 11*11, 222 = 111*2, 242 = 22*11, ...
%t A368944 repQ[n_] := SameQ @@ IntegerDigits[n]; q[n_] := PalindromeQ[n] && AnyTrue[Divisors[n], repQ[#] && repQ[n/#] &]; q[0] = True; Select[Range[0, 25000], q] (* _Amiram Eldar_, Jan 12 2024 *)
%o A368944 (Python)
%o A368944 from itertools import count, takewhile
%o A368944 def ispal(n): return (s:=str(n)) == s[::-1]
%o A368944 def repdigits():
%o A368944     yield 0
%o A368944     yield from ((10**d-1)//9*i for d in count(1) for i in range(1, 10))
%o A368944 def aupto(LIMIT): # use LIMIT = 10**450 for 10K+-term b-file
%o A368944     s, R = set(), list(takewhile(lambda x:x<=LIMIT, repdigits()))
%o A368944     for i, r1 in enumerate(R):
%o A368944         for r2 in R[i:]:
%o A368944             p = r1*r2
%o A368944             if p > LIMIT: break
%o A368944             if ispal(p): s.add(p)
%o A368944     return sorted(s)
%o A368944 print(aupto(3*10**4)) # _Michael S. Branicky_, Jan 10 2024
%Y A368944 Cf. A002113, A002283, A010785 (subsequence), A368955.
%K A368944 nonn,base,easy
%O A368944 1,3
%A A368944 _Stefano Spezia_, Jan 10 2024