This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368952 #11 Jun 03 2024 18:40:36 %S A368952 1,3,6,3,10,15,6,21,6,28,10,36,45,15,10,55,10,66,21,78,15,91,28,105, %T A368952 15,120,36,21,15,136,153,45,171,28,21,190,55,210,21,231,66,36,21,253, %U A368952 28,276,78,300,45,325,91,28,351,36,378,105,55,28,406,28,435,120,465,66,45,36 %N A368952 Irregular triangle T(n,k) read by rows: row n lists the larger number in each pair of triangular numbers (a, b) satisfying a - b = n. %C A368952 The length of row n in the triangle is A001227(n) and its first column T(n, 1) is ordered. Also, A001227(n) = number of 1s in row n of the triangle of A237048 = length of row n in the triangle of A280851. The records of row lengths in the triangle form sequence A038547. %F A368952 n = A000217(x) - A000217(y), x > y >= 0, precisely when sqrt( (2*x + 1)^2 - 8*n ) is an integer. %e A368952 For n=3 with 0 <= k <= 6, sqrt((2*k + 1)^2 - 8*3) has integer values for k=2, 3, so that the pairs of triangular numbers are (3, 0) and (6, 3), and row 3 of the triangle consists of 6 and 3. %e A368952 The first 20 rows of the irregular triangle: %e A368952 n| k: 1 2 3 4 %e A368952 ----------------------------- %e A368952 1| 1 %e A368952 2| 3 %e A368952 3| 6 3 %e A368952 4| 10 %e A368952 5| 15 6 %e A368952 6| 21 6 %e A368952 7| 28 10 %e A368952 8| 36 %e A368952 9| 45 15 10 %e A368952 10| 55 10 %e A368952 11| 66 21 %e A368952 12| 78 15 %e A368952 13| 91 28 %e A368952 14| 105 15 %e A368952 15| 120 36 21 15 %e A368952 16| 136 %e A368952 17| 153 45 %e A368952 18| 171 28 21 %e A368952 19| 190 55 %e A368952 20| 210 21 %e A368952 ... %t A368952 a000217[k_] := k (k+1)/2 %t A368952 triangle[n_] := Map[a000217, Select[Range[a000217[n], 0, -1], IntegerQ[Sqrt[(2#+1)^2 -8n]]&]] %t A368952 a368952[n_] := Flatten[Map[triangle, Range[n]]] %t A368952 a368952[30] %Y A368952 Cf. A000217, A001227, A038547, A136107, A237048, A280851. %K A368952 nonn,tabf %O A368952 1,2 %A A368952 _Hartmut F. W. Hoft_, Jan 10 2024