This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368953 #29 Jan 18 2024 07:48:19 %S A368953 31,310,311,31010,3110,31111,301,310,310101010,3110110,311110, %T A368953 311111111,3010,30101,3011111,3100,31010,31010101010101010,3101111, %U A368953 3110110110110,3110111,3111011,3111101,31111011110,3111110,3111111110,31111111111111111 %N A368953 Irregular triangle read by rows: row n lists (in lexicographical order and with duplicates removed) the strings of the MIU formal system at the n-th level of the tree generated by recursively applying the system rules, starting from the MI string. %C A368953 This is a variant of A368946 (see there for the description of the MIU system) where, within a row, duplicates are removed and encoded strings are ordered lexicographically. %D A368953 Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262. %H A368953 Paolo Xausa, <a href="/A368953/b368953.txt">Table of n, a(n) for n = 0..16809</a> (rows 0..8 of the triangle, flattened). %H A368953 Wikipedia, <a href="https://en.wikipedia.org/wiki/MU_puzzle">MU Puzzle</a> %H A368953 <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a> %e A368953 After recursively applying the rules three times, we get the following tree (cf. Hofstadter (1979), page 40, Figure 11). %e A368953 . %e A368953 MI %e A368953 0 ---------------------- 31 %e A368953 / \ %e A368953 1 2 <--- Rule applied %e A368953 / \ %e A368953 MIU MII %e A368953 1 ---------------- 310 311 %e A368953 / / \ %e A368953 2 1 2 %e A368953 / / \ %e A368953 MIUIU MIIU MIIII %e A368953 2 --------- 31010 3110 31111 %e A368953 / / / | | \ %e A368953 2 2 1 2 3 3 %e A368953 / / / | | \ %e A368953 MIUIUIUIU MIIUIIU MIIIIU | MUI MIU %e A368953 3 --- 310101010 3110110 311110 | 301 310 %e A368953 MIIIIIIII %e A368953 311111111 %e A368953 . %e A368953 After ordering the encoded strings lexicographically within a tree level (and removing duplicates, if present), the triangle begins: %e A368953 [0] 31; %e A368953 [1] 310 311; %e A368953 [2] 31010 3110 31111; %e A368953 [3] 301 310 310101010 3110110 311110 311111111; %e A368953 ... %e A368953 Please note that some strings may be present in different rows: within the first four rows, the string MIU (310) is present in rows 1 and 3. %t A368953 MIUStepL[s_] := Union[Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> StringDrop[#, 1], StringReplaceList[#, {"111" -> "0", "00" -> ""}]}&, s]]]; %t A368953 With[{rowmax = 4}, Map[FromDigits, NestList[MIUStepL, {"31"}, rowmax], {2}]] %Y A368953 Cf. A331536, A368946, A368954 (row lengths), A369173 (all MIU strings). %K A368953 nonn,tabf %O A368953 0,1 %A A368953 _Paolo Xausa_, Jan 10 2024