cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A368977 The number of bi-unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 6, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 6, 3, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e+3)/2, 2*Floor[e/4]+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+3)/2, 2*(x\4)+1), factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2 + 2*X^3 - X^4)/(1 - X - X^4 + X^5))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = (e+3)/2 if e is odd, and 2*floor(e/4)+1 if e is even.
a(n) >= 1, with equality if and only if n is in A062503.
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (1 - p + 2*p^2) / (p*(1 + p)*(1 + p^2))) = 0.5715031234451924252215041182933420817059774181158824297150124265420835...,
f'(1) = f(1) * Sum_{p prime} (4*p^5 - p^4 + 2*p^3 + 2*p + 1) * log(p) / (p^7 + 2*p^6 + p^5 + 3*p^4 + p^3 + p - 1) = f(1) * 1.1422556395248477875508983912036578244050011522937179465478688905880430...
and gamma is the Euler-Mascheroni constant A001620. (End)

A368980 The number of exponential divisors of n that are squares (A000290).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 0, DivisorSigma[0, e/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, 0, numdiv(x/2)), factor(n)[, 2]));

Formula

a(n^2) = A049419(n). [corrected by Ridouane Oudra, Nov 19 2024]
Multiplicative with a(p^e) = A183063(e), or equivalently, a(p^e) = 0 if e is odd, and A000005(e/2) if e is even.
a(n) >= 0, with equality if and only if n is not a square number (A000037).
a(n) <= A049419(n), with equality if and only if n = 1.
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 1.602317... (A327837).

A380398 The number of unitary divisors of n that are perfect powers (A001597).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

First differs from A368978 at n = 32, from A007424 and A369163 at n = 36, from A278908, A307848, A358260 and A365549 at n = 64, and from A323308 at n = 72.
a(n) depends only on the prime signature of n (A118914).
The record values are 2^k, for k = 0, 1, 2, ..., and they are attained at A061742(k).
The sum of unitary divisors of n that are perfect powers is A380400(n).

Examples

			a(4) = 2 since 4 have 2 unitary divisors that are perfect powers, 1 and 4 = 2^2.
a(72) = 3 since 72 have 3 unitary divisors that are perfect powers, 1, 8 = 2^3, and 9 = 3^2.
		

Crossrefs

Programs

  • Mathematica
    ppQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := DivisorSum[n, 1 &, CoprimeQ[#, n/#] && ppQ[#] &]; Array[a, 100]
  • PARI
    a(n) = sumdiv(n, d, gcd(d, n/d) == 1 && (d == 1 || ispower(d)));

Formula

a(n) = Sum_{d|n, gcd(d, n/d) == 1} [d in A001597], where [] is the Iverson bracket.
a(n) = A091050(n) - A380399(n).
a(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - Sum_{k>=2} mu(k)*(zeta(k)/zeta(k+1) - 1) = 1.49341326536904597349..., where mu is the Moebius function (A008683).
Showing 1-3 of 3 results.