A368980 The number of exponential divisors of n that are squares (A000290).
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], 0, DivisorSigma[0, e/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecprod(apply(x -> if(x%2, 0, numdiv(x/2)), factor(n)[, 2]));
Formula
a(n^2) = A049419(n). [corrected by Ridouane Oudra, Nov 19 2024]
Multiplicative with a(p^e) = A183063(e), or equivalently, a(p^e) = 0 if e is odd, and A000005(e/2) if e is even.
a(n) >= 0, with equality if and only if n is not a square number (A000037).
a(n) <= A049419(n), with equality if and only if n = 1.
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 1.602317... (A327837).