This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368984 #12 Jan 29 2024 18:05:41 %S A368984 1,1,2,5,12,29,75,191,504,1339,3610,9800,26881,74118,205706,573514, %T A368984 1606107,4513830,12727944,35989960,102026638,289877828,825273050, %U A368984 2353794251,6724468631,19239746730,55123700591,158133959239,454168562921,1305796834570,3758088009136 %N A368984 Number of graphs with loops (symmetric relations) on n unlabeled vertices in which each connected component has an equal number of vertices and edges. %C A368984 The graphs considered here can have loops but not parallel edges. %C A368984 Also the number of unlabeled loop-graphs with n edges and n vertices such that it is possible to choose a different vertex from each edge. - _Gus Wiseman_, Jan 25 2024 %H A368984 Andrew Howroyd, <a href="/A368984/b368984.txt">Table of n, a(n) for n = 0..500</a> %F A368984 Euler transform of A368983. %e A368984 Representatives of the a(3) = 5 graphs are: %e A368984 {{1,2}, {1,3}, {2,3}}, %e A368984 {{1}, {1,2}, {1,3}}, %e A368984 {{1}, {1,2}, {2,3}}, %e A368984 {{1}, {2}, {2,3}}, %e A368984 {{1}, {2}, {3}}. %e A368984 The graph with 4 vertices and edges {{1}, {2}, {1,2}, {3,4}} is included by A368599 but not by this sequence. %t A368984 brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]]; %t A368984 Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{1,2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}] (* _Gus Wiseman_, Jan 25 2024 *) %Y A368984 The case of a unique choice is A000081. %Y A368984 Without loops we have A137917, labeled A137916. %Y A368984 The labeled version appears to be A333331. %Y A368984 Without the choice condition we have A368598, covering A368599. %Y A368984 The complement is counted by A368835, labeled A368596 (covering A368730). %Y A368984 Row sums of A368926, labeled A368924. %Y A368984 The connected case is A368983. %Y A368984 A000085, A100861, A111924 count set partitions into singletons or pairs. %Y A368984 A000666 counts unlabeled loop-graphs, covering A322700. %Y A368984 A006125 counts simple graphs, unlabeled A000088. %Y A368984 A006129 counts covering graphs, connected A001187, unlabeled A002494. %Y A368984 A322661 counts labeled covering loop-graphs, connected A062740. %Y A368984 Cf. A014068, A057500, A116508, A129271, A133686, A367863, A367869, A367902, A368597, A368601, A368836. %K A368984 nonn %O A368984 0,3 %A A368984 _Andrew Howroyd_, Jan 11 2024