This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369015 #18 Jan 19 2024 16:56:42 %S A369015 1,2,2,3,2,4,2,3,3,4,2,6,2,4,4,5,2,6,2,6,4,4,2,6,3,4,3,6,2,8,2,3,4,4, %T A369015 4,9,2,4,4,6,2,8,2,6,6,4,2,10,3,6,4,6,2,6,4,6,4,4,2,12,2,4,6,7,4,8,2, %U A369015 6,4,8,2,9,2,4,6,6,4,8,2,10,5,4,2,12,4,4 %N A369015 Matula-Goebel number of the prime tower factorization tree of n. %C A369015 The prime tower factorization tree of n having prime factorization n = Product p_i^e_i comprises a root vertex and beneath it child subtrees with tree numbers e_i. %C A369015 The Matula-Goebel number represents a rooted tree (no ordering among siblings), so the primes p_i have no effect, just the exponents. %C A369015 Runs of various consecutive equal values occur (so the same tree structure), and n = A368899(k) is the first place where a run of length >= k begins. %H A369015 Pontus von Brömssen, <a href="/A369015/b369015.txt">Table of n, a(n) for n = 1..10000</a> %H A369015 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a> %F A369015 a(n) = Product prime(a(e_i)) where e_i = A124010(n,i) is each exponent in the prime factorization of n. %F A369015 Multiplicative with a(p^e) = prime(a(e)) for prime p. %F A369015 From _Pontus von Brömssen_, Jan 15 2024: (Start) %F A369015 a(n) = 2^k if and only if n is the product of k distinct primes. %F A369015 a(n) = 3 if and only if n is a prime power of a prime number (A053810). %F A369015 (End) %e A369015 n = 274274771783272 = 2^3 * 13^(3^2) * 53^1 * 61^1 has exponents 3, 9, 1, 1 which become the following prime tower factorization tree, and corresponding Matula-Goebel number a(n) = 60: %e A369015 . %e A369015 n=274274771783272 a(n)=60 %e A369015 / | | \ / | | \ %e A369015 3 9 1 1 2 3 1 1 %e A369015 | | | | %e A369015 1 2 1 2 %e A369015 | | %e A369015 1 1 %o A369015 (PARI) a(n) = vecprod([prime(self()(e)) |e<-factor(n)[,2]]); %Y A369015 Cf. A124010 (exponents), A369099 (first occurrences), A368899 (first runs). %Y A369015 Cf. A053810. %K A369015 nonn,mult,easy %O A369015 1,2 %A A369015 _Kevin Ryde_, Jan 12 2024