This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369016 #22 Jan 28 2024 18:07:41 %S A369016 0,0,0,0,1,0,0,6,2,0,0,48,18,12,0,0,500,192,144,108,0,0,6480,2500, %T A369016 1920,1620,1280,0,0,100842,38880,30000,25920,23040,18750,0,0,1835008, %U A369016 705894,544320,472500,430080,393750,326592,0 %N A369016 Triangle read by rows: T(n, k) = binomial(n - 1, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k - 1). %F A369016 T = B066320 - A369017 (where B066320 = A066320 after adding a 0-column to the left and then setting offset to (0, 0)). %e A369016 Triangle starts: %e A369016 [0] [0] %e A369016 [1] [0, 0] %e A369016 [2] [0, 1, 0] %e A369016 [3] [0, 6, 2, 0] %e A369016 [4] [0, 48, 18, 12, 0] %e A369016 [5] [0, 500, 192, 144, 108, 0] %e A369016 [6] [0, 6480, 2500, 1920, 1620, 1280, 0] %e A369016 [7] [0, 100842, 38880, 30000, 25920, 23040, 18750, 0] %e A369016 [8] [0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0] %p A369016 T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1): %p A369016 seq(seq(T(n, k), k = 0..n), n=0..9); %t A369016 A369016[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k-1); Table[A369016[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 28 2024 *) %o A369016 (SageMath) %o A369016 def T(n, k): return binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1) %o A369016 for n in range(0, 9): print([T(n, k) for k in range(n + 1)]) %Y A369016 A368849, A368982 and this sequence are alternative sum representation for A001864 with different normalizations. %Y A369016 T(n, k) = A368849(n, k) / n for n >= 1. %Y A369016 T(n, 1) = A053506(n) for n >= 1. %Y A369016 T(n, n - 1) = A055897(n - 1) for n >= 2. %Y A369016 Sum_{k=0..n} T(n, k) = A000435(n) for n >= 1. %Y A369016 Sum_{k=0..n} (-1)^(k+1)*T(n, k) = A368981(n) / n for n >= 1. %Y A369016 Cf. A066320, A369017. %K A369016 nonn,tabl %O A369016 0,8 %A A369016 _Peter Luschny_, Jan 12 2024