cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368982 Triangle read by rows: T(n, k) = binomial(n, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k) / 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 9, 3, 0, 0, 96, 36, 24, 0, 0, 1250, 480, 360, 270, 0, 0, 19440, 7500, 5760, 4860, 3840, 0, 0, 352947, 136080, 105000, 90720, 80640, 65625, 0, 0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0
Offset: 0

Views

Author

Peter Luschny, Jan 11 2024

Keywords

Examples

			Triangle starts:
  [0] [0]
  [1] [0,       0]
  [2] [0,       1,       0]
  [3] [0,       9,       3,       0]
  [4] [0,      96,      36,      24,       0]
  [5] [0,    1250,     480,     360,     270,       0]
  [6] [0,   19440,    7500,    5760,    4860,    3840,       0]
  [7] [0,  352947,  136080,  105000,   90720,   80640,   65625,       0]
  [8] [0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0]
		

Crossrefs

A368849, A369016 and this sequence are alternative sum representation for A001864 with different normalizations.
T(n, k) = A368849(n, k) / 2.
T(n, 1) = A081131(n) for n >= 1.
T(n, n - 1) = A081133(n - 2) for n >= 2.
Sum_{k=0..n} T(n, k) = A036276(n - 1) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) = A368981(n) / 2 for n >= 0.

Programs

  • Maple
    T := (n, k) -> binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)/2:
    seq(seq(T(n, k), k = 0..n), n=0..9);
  • Mathematica
    A368982[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k)/2; Table[A368982[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
  • SageMath
    def T(n, k): return binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)//2
    for n in range(0, 9): print([T(n, k) for k in range(n + 1)])

Formula

A369017 Triangle read by rows: T(n, k) = binomial(n-1, k-1) * (k - 1)^(k - 1) * k * (n - k + 1)^(n - k - 1).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 3, 4, 12, 0, 16, 18, 36, 108, 0, 125, 128, 216, 432, 1280, 0, 1296, 1250, 1920, 3240, 6400, 18750, 0, 16807, 15552, 22500, 34560, 57600, 112500, 326592, 0, 262144, 235298, 326592, 472500, 716800, 1181250, 2286144, 6588344
Offset: 0

Views

Author

Peter Luschny, Jan 12 2024

Keywords

Examples

			Triangle starts:
[0][0]
[1][0,      1]
[2][0,      1,      2]
[3][0,      3,      4,     12]
[4][0,     16,     18,     36,    108]
[5][0,    125,    128,    216,    432,   1280]
[6][0,   1296,   1250,   1920,   3240,   6400,   18750]
[7][0,  16807,  15552,  22500,  34560,  57600,  112500,  326592]
[8][0, 262144, 235298, 326592, 472500, 716800, 1181250, 2286144, 6588344]
		

Crossrefs

Programs

  • Julia
    T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k-1)
    for n in 0:9 (println([T(n, k) for k in 0:n])) end
    
  • Maple
    T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k-1):
    seq(seq(T(n, k), k = 0..n), n=0..9);
  • Mathematica
    A369017[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k-1);
    Table[A369017[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
  • PARI
    T(n, k) = binomial(n-1, k-1) * (k - 1)^(k - 1) * k * (n - k + 1)^(n - k - 1) \\ Winston de Greef, Jan 27 2024

Formula

T = B066320 - A369016 (where B066320 = A066320 after adding a 0-column to the left and then setting offset to (0, 0)).
Showing 1-2 of 2 results.