A369017 Triangle read by rows: T(n, k) = binomial(n-1, k-1) * (k - 1)^(k - 1) * k * (n - k + 1)^(n - k - 1).
0, 0, 1, 0, 1, 2, 0, 3, 4, 12, 0, 16, 18, 36, 108, 0, 125, 128, 216, 432, 1280, 0, 1296, 1250, 1920, 3240, 6400, 18750, 0, 16807, 15552, 22500, 34560, 57600, 112500, 326592, 0, 262144, 235298, 326592, 472500, 716800, 1181250, 2286144, 6588344
Offset: 0
Examples
Triangle starts: [0][0] [1][0, 1] [2][0, 1, 2] [3][0, 3, 4, 12] [4][0, 16, 18, 36, 108] [5][0, 125, 128, 216, 432, 1280] [6][0, 1296, 1250, 1920, 3240, 6400, 18750] [7][0, 16807, 15552, 22500, 34560, 57600, 112500, 326592] [8][0, 262144, 235298, 326592, 472500, 716800, 1181250, 2286144, 6588344]
Links
- Winston de Greef, Table of n, a(n) for the first 150 rows, flattened (n = 0..11324)
Programs
-
Julia
T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k-1) for n in 0:9 (println([T(n, k) for k in 0:n])) end
-
Maple
T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k-1): seq(seq(T(n, k), k = 0..n), n=0..9);
-
Mathematica
A369017[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k-1); Table[A369017[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
-
PARI
T(n, k) = binomial(n-1, k-1) * (k - 1)^(k - 1) * k * (n - k + 1)^(n - k - 1) \\ Winston de Greef, Jan 27 2024