This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369019 #15 Jan 27 2024 18:48:35 %S A369019 0,0,1,0,2,4,0,9,12,36,0,64,72,144,432,0,625,640,1080,2160,6400,0, %T A369019 7776,7500,11520,19440,38400,112500,0,117649,108864,157500,241920, %U A369019 403200,787500,2286144,0,2097152,1882384,2612736,3780000,5734400,9450000,18289152,52706752 %N A369019 Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k). %F A369019 T = A369018 - A368849. %e A369019 Triangle starts: %e A369019 [0] [0] %e A369019 [1] [0, 1] %e A369019 [2] [0, 2, 4] %e A369019 [3] [0, 9, 12, 36] %e A369019 [4] [0, 64, 72, 144, 432] %e A369019 [5] [0, 625, 640, 1080, 2160, 6400] %e A369019 [6] [0, 7776, 7500, 11520, 19440, 38400, 112500] %e A369019 [7] [0, 117649, 108864, 157500, 241920, 403200, 787500, 2286144] %p A369019 T := (n, k) -> binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k): %p A369019 seq(seq(T(n, k), k = 0..n), n=0..9); %t A369019 A369019[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k); %t A369019 Table[A369019[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 27 2024 *) %o A369019 (SageMath) %o A369019 def A369019(n, k): %o A369019 return binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k) %Y A369019 Cf. A369018, A368849. %K A369019 nonn,tabl %O A369019 0,5 %A A369019 _Peter Luschny_, Jan 13 2024