cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369020 Numbers k such that k and k+1 have the same maximal exponent in their prime factorization.

Original entry on oeis.org

2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 99, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2024

Keywords

Comments

Differs from A358817 by having the terms 99, 165, 166, ..., which are not in A358817, and not having the terms 1, 440, 1331, 1575, ..., which are in A358817.
Numbers k such that A051903(k) = A051903(k+1).
If k is a term then k*(k+1) is a term of A362605.
The asymptotic density of this sequence is d(2) + Sum_{k>=2} (d(k) + d(k+1) - 2 * d2(k)) = 0.36939178586283962461..., where d(k) = Product_{p prime} (1 - 2/p^k) and d2(k) = Product_{p prime} (1 - 1/p^k - 1/p^(k+1)).

Crossrefs

Programs

  • Mathematica
    emax[n_] := emax[n] = Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; Select[Range[200], emax[#] == emax[# + 1] &]
  • PARI
    emax(n) = if(n == 1, 0, vecmax(factor(n)[, 2]));
    lista(kmax) = {my(e1 = 0, e2); for(k = 2, kmax, e2 = emax(k); if(e1 == e2, print1(k-1, ", ")); e1 = e2);}