This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369025 #17 Jan 13 2024 15:09:56 %S A369025 0,0,0,0,1,2,0,4,6,18,0,32,36,72,216,0,312,320,540,1080,3200,0,3888, %T A369025 3750,5760,9720,19200,56250,0,58824,54432,78750,120960,201600,393750, %U A369025 1143072,0,1048576,941192,1306368,1890000,2867200,4725000,9144576,26353376 %N A369025 Triangle read by rows: T(n, k) = floor(binomial(n, k - 1) * (k - 1)^(k - 1) * k *(n - k + 1)^(n - k) / 2). %e A369025 Triangle starts: %e A369025 [0] [0] %e A369025 [1] [0, 0] %e A369025 [2] [0, 1, 2] %e A369025 [3] [0, 4, 6, 18] %e A369025 [4] [0, 32, 36, 72, 216] %e A369025 [5] [0, 312, 320, 540, 1080, 3200] %e A369025 [6] [0, 3888, 3750, 5760, 9720, 19200, 56250] %e A369025 [7] [0, 58824, 54432, 78750, 120960, 201600, 393750, 1143072] %t A369025 A369025[n_, k_] := Floor[Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k) / 2]; %t A369025 Table[A369025[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 12 2024 *) %o A369025 (SageMath) %o A369025 def A369025(n, k): %o A369025 return binomial(n, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k)//2 %o A369025 for n in range(9): print([A369025(n, k) for k in range(n+1)]) %Y A369025 Cf. A369026 (column 1), A369027 (main diagonal). %K A369025 nonn,tabl %O A369025 0,6 %A A369025 _Peter Luschny_, Jan 12 2024