This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369028 #12 Jan 24 2024 18:33:33 %S A369028 1,2,2,3,2,1,3,5,2,1,1,1,3,1,5,7,2,1,1,1,1,1,1,1,3,1,1,1,5,1,7,11,2,1, %T A369028 1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,5,1,1,1,7,1,11,13,2,1,1, %U A369028 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1 %N A369028 Exponential of Mangoldt function permuted by A253563. %C A369028 Also LCM-transform of A253563 (when viewed as an offset-1 sequence), because A253563 has the S-property explained in the comments of A368900. %H A369028 Antti Karttunen, <a href="/A369028/b369028.txt">Table of n, a(n) for n = 0..65537</a> %H A369028 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A369028 a(n) = A014963(A253563(n)). %F A369028 a(1) = 0, and for n > 0, a(n) = lcm {1..A253563(n)} / lcm {1..A253563(n-1)}. [See comments] %o A369028 (PARI) %o A369028 A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); }; %o A369028 A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); %o A369028 A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n))); %o A369028 A253560(n) = if(1==n, 1, (n*prime(A061395(n)))); %o A369028 A253563(n) = if(n<2,(1+n),if(!(n%2),A253560(A253563(n/2)),A253550(A253563((n-1)/2)))); %o A369028 A369028(n) = A014963(A253563(n)); %Y A369028 Cf. A014963, A054429, A368900, A369029, A369030, A369053. %K A369028 nonn %O A369028 0,2 %A A369028 _Antti Karttunen_, Jan 12 2024