This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369029 #12 Jan 24 2024 18:33:44 %S A369029 1,2,3,2,5,3,1,2,7,5,1,3,1,1,1,2,11,7,1,5,1,1,1,3,1,1,1,1,1,1,1,2,13, %T A369029 11,1,7,1,1,1,5,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,17,13, %U A369029 1,11,1,1,1,7,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1 %N A369029 Exponential of Mangoldt function permuted by A253565. %C A369029 Also LCM-transform of A253565 (when viewed as an offset-1 sequence), because A253565 has the S-property explained in the comments of A368900. %H A369029 Antti Karttunen, <a href="/A369029/b369029.txt">Table of n, a(n) for n = 0..65537</a> %H A369029 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A369029 a(n) = A014963(A253565(n)). %F A369029 a(0) = 1, and for n > 0, a(n) = lcm {1..A253565(n)} / lcm {1..A253565(n-1)}. [LCM-transform, see comments] %o A369029 (PARI) %o A369029 A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); }; %o A369029 A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); %o A369029 A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n))); %o A369029 A253560(n) = if(1==n, 1, (n*prime(A061395(n)))); %o A369029 A253565(n) = if(n<2,(1+n),if(!(n%2),A253550(A253565(n/2)),A253560(A253565((n-1)/2)))); %o A369029 A369029(n) = A014963(A253565(n)); %Y A369029 Cf. A014963, A253565, A368900, A369028, A369030, A369053. %K A369029 nonn %O A369029 0,2 %A A369029 _Antti Karttunen_, Jan 12 2024