This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369056 #25 Apr 17 2024 15:33:25 %S A369056 3,7,11,15,19,23,31,35,43,47,59,63,67,79,83,99,107,115,127,139,143, %T A369056 159,163,171,175,179,207,219,223,227,235,243,259,279,283,295,303,307, %U A369056 319,323,339,347,367,379,387,399,403,415,427,443,463,499,515,523,531,547,559,571,579,595,603,619,639,643,655,659,675 %N A369056 Numbers k of the form 4m+3 for which there is no representation as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r. %C A369056 Numbers k in A004767 for which A369054(k) = 0. %C A369056 Numbers k of the form 4m-1 such that they are not arithmetic derivative (A003415) of any term of A046316. %C A369056 Question: Is it possible that this sequence might be finite (although very long)? See comments in A369055. %H A369056 Antti Karttunen, <a href="/A369056/b369056.txt">Table of n, a(n) for n = 1..20000</a> %p A369056 N:= 1000: # for terms <= N %p A369056 S:= {seq(i,i=3..N,4)}: %p A369056 P:= select(isprime, [seq(i,i=3..N/3,2)]): %p A369056 for i from 1 to nops(P) do %p A369056 p:= P[i]; %p A369056 for j from i to nops(P) do %p A369056 q:= P[j]; %p A369056 if 2*p*q + q^2 > N then break fi; %p A369056 for k from j to nops(P) do %p A369056 r:= P[k]; %p A369056 v:= p*q + p*r + q*r; %p A369056 if v > N then break fi; %p A369056 S:= S minus {v}; %p A369056 od od od: %p A369056 sort(convert(S,list)); # _Robert Israel_, Apr 17 2024 %o A369056 (PARI) isA369056(n) = ((3==(n%4)) && !A369054(n)); \\ Needs also program from A369054. %Y A369056 Setwise difference A004767 \ A369251. %Y A369056 Cf. A003415, A046316, A369054, A369055. %Y A369056 Subsequences: A369248 (terms that are multiples of 3), A369249 (primes in this sequence). %Y A369056 Cf. also A369250 (4m+3 primes missing from this sequence). %K A369056 nonn %O A369056 1,1 %A A369056 _Antti Karttunen_, Jan 20 2024