This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369060 #9 Jan 13 2024 16:13:53 %S A369060 1,2,3,5,2,1,1,2,3,7,1,1,5,1,1,1,2,1,1,1,1,5,1,1,1,2,3,11,1,1,1,1,1,1, %T A369060 1,1,7,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,2,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1, %U A369060 1,1,1,1,1,1,1,5,1,1,1,2,3,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A369060 LCM-transform of Sycamore's D(3) variant of Doudna sequence (A356867). %C A369060 See discussion at A368900. %H A369060 Antti Karttunen, <a href="/A369060/b369060.txt">Table of n, a(n) for n = 1..19683</a> %F A369060 a(n) = lcm {1..A356867(n)} / lcm {1..A356867(n-1)}. %F A369060 a(n) = A014963(A356867(n)). [This holds because A356867 satisfies the property S explained in A368900] %o A369060 (PARI) %o A369060 up_to = 3^9; \\ Checked up to (3^12) %o A369060 A356867list(up_to) = { my(v=vector(up_to),met=Map(),h=0,ak); for(i=1,#v,if(1==sumdigits(i,3), v[i] = i; h = i, ak = v[i-h]; forprime(p=2,,if(3!=p && !mapisdefined(met,p*ak), v[i] = p*ak; break))); mapput(met,v[i],i)); (v); }; %o A369060 v356867 = A356867list(up_to); %o A369060 A356867(n) = v356867[n]; %o A369060 LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); }; %o A369060 v369060 = LCMtransform(v356867); %o A369060 A369060(n) = v369060[n]; %o A369060 A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); }; %Y A369060 Cf. A014963, A356867, A368900. %K A369060 nonn %O A369060 1,2 %A A369060 _Antti Karttunen_, Jan 13 2024