This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369072 #8 Jan 13 2024 15:05:46 %S A369072 0,0,0,0,2,2,0,13,9,18,0,128,72,96,216,0,1562,800,900,1350,3200,0, %T A369072 23328,11250,11520,14580,23040,56250,0,411771,190512,183750,211680, %U A369072 282240,459375,1143072,0,8388608,3764768,3483648,3780000,4587520,6300000,10450944,26353376 %N A369072 Triangle read by rows: T(n, k) = floor(binomial(n, k - 1) * (k - 1)^(k - 1) * n * (n - k + 1)^(n - k) / 2). %e A369072 Triangle starts: %e A369072 [0] [0] %e A369072 [1] [0, 0] %e A369072 [2] [0, 2, 2] %e A369072 [3] [0, 13, 9, 18] %e A369072 [4] [0, 128, 72, 96, 216] %e A369072 [5] [0, 1562, 800, 900, 1350, 3200] %e A369072 [6] [0, 23328, 11250, 11520, 14580, 23040, 56250] %e A369072 [7] [0, 411771, 190512, 183750, 211680, 282240, 459375, 1143072] %t A369072 A369072[n_, k_] := Floor[Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] n (n-k+1)^(n-k) / 2]; %t A369072 Table[A369072[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 13 2024 *) %o A369072 (SageMath) %o A369072 def A369072(n, k): %o A369072 return binomial(n, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k)//2 %o A369072 for n in range(9): print([A369072(n, k) for k in range(n+1)]) %Y A369072 Cf. A057065 (column 1), A369027 (main diagonal). %K A369072 nonn,tabl %O A369072 0,5 %A A369072 _Peter Luschny_, Jan 12 2024