cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369076 Expansion of (1/x) * Series_Reversion( x * (1+x^2/(1-x))^2 ).

This page as a plain text file.
%I A369076 #10 Jan 13 2024 10:46:16
%S A369076 1,0,-2,-2,9,24,-37,-240,-2,2126,2919,-16052,-50663,86940,631995,
%T A369076 19094,-6491463,-9595434,54443985,181532910,-317331187,-2426618056,
%U A369076 -133151895,26332109928,40544827703,-230619508548,-793966990358,1384746844832,10960715925621,881359815524
%N A369076 Expansion of (1/x) * Series_Reversion( x * (1+x^2/(1-x))^2 ).
%H A369076 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A369076 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n+k+1,k) * binomial(n-k-1,n-2*k).
%o A369076 (PARI) my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1+x^2/(1-x))^2)/x)
%o A369076 (PARI) a(n, s=2, t=2, u=-2) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
%Y A369076 Cf. A168491, A369077.
%Y A369076 Cf. A368969, A368973, A368975.
%Y A369076 Cf. A368957.
%K A369076 sign
%O A369076 0,3
%A A369076 _Seiichi Manyama_, Jan 12 2024