This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369083 #12 Jan 13 2024 02:11:07 %S A369083 1,1,3,7,30,83,402,1199,6180,19232,102939,329217,1807344,5891442, %T A369083 32936724,108884607,617125788,2062285676,11813994060,39818644316, %U A369083 230067933810,780838528379,4543410985386,15509003672617,90771938228244,311354249554852,1831389290870538,6307784087296006 %N A369083 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(5*A(x)^2 - A(-x)^2)/4. %C A369083 Conjecture: a(n) == binomial(4*n+3,n) (mod 2) for n >= 0 (cf. A263133). %H A369083 Paul D. Hanna, <a href="/A369083/b369083.txt">Table of n, a(n) for n = 0..600</a> %F A369083 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas. %F A369083 (1.a) A(x) = 1 + x*(5*A(x)^2 - A(-x)^2)/4. %F A369083 (1.b) A(x) = 1 + x*(A(x)^2 + A(-x)^2)/2 + (3/2)*x*(A(x)^2 - A(-x)^2)/2. %F A369083 (2.a) (A(x) + A(-x))/2 = 1 + (3/2)*x*(A(x)^2 - A(-x)^2)/2. %F A369083 (2.b) (A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2. %F A369083 (2.c) (A(x) + A(-x))/2 = 1/(1 - 3*x*(A(x) - A(-x))/2). %F A369083 (3.a) A(x) = (1 - sqrt(1 - 12*x + 6*x*A(-x) + 9*x^2*A(-x)^2)) / (3*x). %F A369083 (3.b) A(-x) = (sqrt(1 + 12*x - 6*x*A(x) + 9*x^2*A(x)^2) - 1) / (3*x). %F A369083 (4.a) A(x) = (1 - sqrt(1 - 4*x*A(-x) - 4*x^2*A(-x)^2)) / (2*x). %F A369083 (4.b) A(-x) = (sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2) - 1) / (2*x). %F A369083 (5) 0 = (1-4*x) - (1-10*x)*A(x) - (5+12*x)*x*A(x)^2 + 15*x^2*A(x)^3 - 9*x^3*A(x)^4. %F A369083 (6) x = (1 + 10*x*A(x) - 12*x^2*A(x)^2 - sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2))/8. %F A369083 (7) A(x) = (1/x)*Series_Reversion( (1 + 10*x - 12*x^2 - sqrt(1 + 4*x - 4*x^2))/8 ). %e A369083 G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 30*x^4 + 83*x^5 + 402*x^6 + 1199*x^7 + 6180*x^8 + 19232*x^9 + 102939*x^10 + ... %e A369083 RELATED SERIES. %e A369083 We can see from the expansion of A(x)^2, which begins %e A369083 A(x)^2 = 1 + 2*x + 7*x^2 + 20*x^3 + 83*x^4 + 268*x^5 + 1199*x^6 + 4120*x^7 + 19232*x^8 + 68626*x^9 + 329217*x^10 + ... %e A369083 that the odd bisection of A(x) is derived from the even bisection of A(x)^2: %e A369083 (A(x) - A(-x))/2 = x + 7*x^3 + 83*x^5 + 1199*x^7 + 19232*x^9 + ... %e A369083 (A(x)^2 + A(-x)^2)/2 = 1 + 7*x^2 + 83*x^4 + 1199*x^6 + 19232*x^8 + ... %e A369083 and the even bisection of A(x) is derived from the odd bisection of A(x)^2: %e A369083 (A(x) + A(-x))/2 = 1 + 3*x^2 + 30*x^4 + 402*x^6 + 6180*x^8 + 102939*x^10 + ... %e A369083 (A(x)^2 - A(-x)^2)/2 = 2*x + 20*x^3 + 268*x^5 + 4120*x^7 + 68626*x^9 + ... %e A369083 so that (A(x) + A(-x))/2 = 1 + (3/2)*x * (A(x)^2 - A(-x)^2)/2. %o A369083 (PARI) {a(n) = my(A=1+x, B); for(i=1, n, A=truncate(A)+x*O(x^i); B=subst(A, x, -x); %o A369083 A = 1 + x*(A^2 + B^2)/2 + (3/2)*x*(A^2 - B^2)/2 ); polcoeff(A, n)} %o A369083 for(n=0, 30, print1(a(n), ", ")) %o A369083 (PARI) {a(n) = my(A); A = (1/x)*serreverse( (1 + 10*x - 12*x^2 - sqrt(1 + 4*x - 4*x^2 +x^2*O(x^n) ))/8 ); polcoeff(A, n)} %o A369083 for(n=0, 30, print1(a(n), ", ")) %Y A369083 Cf. A368633, A368634, A368635, A368627, A368629. %K A369083 nonn %O A369083 0,3 %A A369083 _Paul D. Hanna_, Jan 12 2024