This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369093 #14 Jan 18 2024 09:29:01 %S A369093 1,2,3,5,7,11,13,17,19,23,29,31,35,37,41,43,47,53,59,61,67,71,73,79, %T A369093 83,89,97,101,103,107,109,113,119,127,131,137,139,149,151,157,163,167, %U A369093 173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293 %N A369093 Numbers k >= 1 such that sigma(k) divides the sum of the triangular numbers T(k) and T(k+1), where sigma(k) = A000203(k) is the sum of the divisors of k. %C A369093 k is a term if (k^2+k)/2 + ((k+1)^2+k+1)/2 = k^2+2*k+1 = (k+1)^2 is divisible by sigma(k). %C A369093 Trivial case: If k is prime, then sigma(k) = k+1 and (k+1)^2 is divisible by k+1, thus all primes are terms of this sequence. %C A369093 Table with the percentage of primes <= 10^k compared with the number of terms and the number of primes <= 10^k, for k = 2..8: %C A369093 . %C A369093 | k | #terms <= 10^k | #primes <= 10^k | %primes <= 10^k | %C A369093 | 2 | 27 | 25 | 92.59 | %C A369093 | 3 | 175 | 168 | 96.00 | %C A369093 | 4 | 1248 | 1229 | 98.48 | %C A369093 | 5 | 9627 | 9592 | 99.64 | %C A369093 | 6 | 78565 | 78498 | 99.91 | %C A369093 | 7 | 664707 | 664579 | 99.98 | %C A369093 | 8 | 5761724 | 5761455 | 99.99 | %C A369093 . %C A369093 The percentage of primes increases asymptotically as 10^k increases. %C A369093 Conjecture: The asymptotic density of primes in this sequence is 1. %C A369093 Contains terms like 2, 399, 935, 1539,.. which are not in A210494. Does not contain terms like 775, 819, 3335, 6815,.. which are in A210494. - _R. J. Mathar_, Jan 18 2024 %e A369093 3 is a term since (3+1)^2 = 4^2 = 16 is divisible by sigma(3) = 4. %e A369093 35 is a term since (35+1)^2 = 36^2 = 1296 is divisible by sigma(35) = 48. %e A369093 42 is not a term since (42+1)^2 = 43^2 = 1849 is not divisible by sigma(42) = 96. %p A369093 isA369093 := proc(k) %p A369093 if modp((k+1)^2, numtheory[sigma](k)) = 0 then %p A369093 true; %p A369093 else %p A369093 false; %p A369093 end if; %p A369093 end proc: %p A369093 A369093 := proc(n) %p A369093 option remember ; %p A369093 if n = 1 then %p A369093 1; %p A369093 else %p A369093 for a from procname(n-1)+1 do %p A369093 if isA369093(a) then %p A369093 return a; %p A369093 end if; %p A369093 end do: %p A369093 end if; %p A369093 end proc: %p A369093 [seq(A369093(n),n=1..100)] ; # _R. J. Mathar_, Jan 18 2024 %o A369093 (PARI) isok(n) = my(x=(n+1)^2,y=sigma(n));!(x%y); %Y A369093 Cf. A000203, A000217. %Y A369093 Cf. A090777, A356410, A369096, A369097. %Y A369093 Subsequence: A000040. %K A369093 nonn,easy %O A369093 1,2 %A A369093 _Claude H. R. Dequatre_, Jan 13 2024