This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369096 #19 Mar 29 2025 01:37:30 %S A369096 2,3,4,5,7,8,9,11,13,15,16,17,19,21,23,25,27,29,31,32,33,35,37,39,41, %T A369096 43,45,47,49,51,53,55,57,59,61,63,64,65,67,69,71,73,75,77,79,81,83,85, %U A369096 87,89,91,93,95,97,99,101,103,107,109,110,111,113,115,117,119,121,123,125,127,128,129 %N A369096 Numbers k >= 2 such that omega(k) divides the sum of the triangular numbers T(k) and T(k+1), where omega(k) is the number of distinct primes dividing k (A001221). %C A369096 k is a term if (k^2+k)/2 + ((k+1)^2+k+1)/2 = k^2+2*k+1 = (k+1)^2 is divisible by omega(k). %C A369096 Trivial case: If k is prime, then omega(k) = 1 and (k+1)^2 is always divisible by 1, thus all primes are terms of this sequence. %C A369096 Table with percentage of primes <= 10^k for k = 2..9: %C A369096 | k | #terms <= 10^k | #primes <= 10^k | %primes <= 10^k | %C A369096 | 2 | 55 | 25 | 45.45 | %C A369096 | 3 | 506 | 168 | 33.20 | %C A369096 | 4 | 4832 | 1229 | 25.43 | %C A369096 | 5 | 46675 | 9592 | 20.55 | %C A369096 | 6 | 456155 | 78498 | 17.21 | %C A369096 | 7 | 4480617 | 664579 | 14.83 | %C A369096 | 8 | 44081959 | 5761455 | 13.07 | %C A369096 | 9 | 433916814 | 50847535 | 11.72 | %C A369096 The percentage of primes decreases asymptotically as 10^k increases. %C A369096 Conjecture: the asymptotic density of primes in this sequence is 0. %e A369096 2 is a term since (2+1)^2 = 3^2 = 9 is divisible by omega(2) = 1. %e A369096 15 is a term since (15+1)^2 = 16^2 = 256 is divisible by omega(15) = 2. %e A369096 12 is not a term since (12+1)^2 = 13^2 = 169 is not divisible by omega(12) = 2. %p A369096 isA369096 := proc(k) %p A369096 if modp((k+1)^2, A001221(k)) = 0 then %p A369096 true; %p A369096 else %p A369096 false; %p A369096 end if; %p A369096 end proc: %p A369096 A369096 := proc(n) %p A369096 option remember ; %p A369096 if n = 1 then %p A369096 2; %p A369096 else %p A369096 for a from procname(n-1)+1 do %p A369096 if isA369096(a) then %p A369096 return a; %p A369096 end if; %p A369096 end do: %p A369096 end if; %p A369096 end proc: %p A369096 [seq(A369096(n),n=1..100)] ; # _R. J. Mathar_, Jan 18 2024 %o A369096 (PARI) isok(n)=my(x=(n+1)^2,y=omega(n));!(x%y); %Y A369096 Cf. A000217, A001221. %Y A369096 Cf. A090777, A356410, A369093, A369097. %Y A369096 Subsequence: A000040. %K A369096 nonn,easy %O A369096 1,1 %A A369096 _Claude H. R. Dequatre_, Jan 13 2024