This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369098 #24 Feb 24 2024 14:25:44 %S A369098 0,0,0,0,1,2,6,24,118,714,5016,40200,362163,3623772,39876540, %T A369098 478639080,6223394516,87138394540,1307195547720,20916564680760, %U A369098 355600269756485,6401066270800350,121624180731849810,2432546364331038480,51084540451761077514,1123879093137556106358 %N A369098 Number of permutations of [n] having exactly one adjacent 4-cycle. %H A369098 R. A. Brualdi and Emeric Deutsch, <a href="http://arxiv.org/abs/1005.0781">Adjacent q-cycles in permutations</a>, arXiv:1005.0781 [math.CO], 2010. %F A369098 G.f.: Sum_{k>=1} k! * x^(k+3) / (1+x^4)^(k+1). %F A369098 a(n) = Sum_{k=0..floor(n/4)-1} (-1)^k * (n-3*k-3)! / k!. %e A369098 The permutations of {1,2,3,4,5} having exactly one adjacent 4-cycle are (1234)(5) and (1)(2345). So a(5) = 2. %o A369098 (PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, k!*x^(k+3)/(1+x^4)^(k+1)))) %o A369098 (PARI) a(n, k=1, q=4) = sum(j=0, n\q-k, (-1)^j*(n-(q-1)*(j+k))!/j!)/k!; %Y A369098 Column k=4 of A370527. %Y A369098 Column k=1 of A177252. %K A369098 nonn %O A369098 0,6 %A A369098 _Seiichi Manyama_, Feb 24 2024