This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369114 #27 Jan 25 2024 10:47:25 %S A369114 1,3,15,92,630,4620,35494,282015,2298417,19108265,161418543, %T A369114 1381606044,11955789440,104427062460,919430773992,8151530382264, %U A369114 72711166411422,652075100808960,5875868463764446,53175058170610530,483082193418731280,4404057834071995110 %N A369114 Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x^3) ). %H A369114 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A369114 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(4*n+2,n-3*k). %F A369114 D-finite with recurrence 81*n*(n-1)*(n+1)*a(n) -945*n^2*(n-1)*a(n-1) +441*(n-1)*(3*n^2+9*n-20)*a(n-2) +3*(1039*n^3 -12393*n^2 +37406*n-33232)*a(n-3) -448*(2*n-5) *(4*n-13)*(4*n-11)*a(n-4)=0. - _R. J. Mathar_, Jan 25 2024 %p A369114 A369114 := proc(n) %p A369114 add(binomial(n+k,k) * binomial(4*n+2,n-3*k),k=0..floor(n/3)) ; %p A369114 %/(n+1) ; %p A369114 end proc; %p A369114 seq(A369114(n),n=0..70) ; # _R. J. Mathar_, Jan 25 2024 %o A369114 (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x^3))/x) %o A369114 (PARI) a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(4*n+2, n-3*k))/(n+1); %Y A369114 Cf. A368011, A369102. %Y A369114 Cf. A097188. %K A369114 nonn %O A369114 0,2 %A A369114 _Seiichi Manyama_, Jan 13 2024