A369118 k is a term if and only if k is a composite number where the bases and the exponents of its factors in the prime decomposition are all odd primes.
27, 125, 243, 343, 1331, 2187, 2197, 3125, 3375, 4913, 6859, 9261, 12167, 16807, 24389, 29791, 30375, 35937, 42875, 50653, 59319, 68921, 78125, 79507, 83349, 84375, 103823, 132651, 148877, 161051, 166375, 177147, 185193, 205379, 226981, 273375, 274625
Offset: 1
Keywords
Examples
25015118625 = 3^5 * 5^3 * 7^7 is a term. 3125 = 5^5 and 3375 = 3^3 * 5^3 are terms but 3125*3375 is not a term.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
A369118Q[n_] := OddQ[n] && AllTrue[FactorInteger[n], OddQ[#] && PrimeQ[#]&, 2]; Select[Range[500000], A369118Q] (* Paolo Xausa, Jan 19 2024 *)
-
PARI
isok(k) = k > 1 && (k % 2 && #select(x -> (x <= 2) || !isprime(x), factor(k)[, 2]) == 0); \\ Amiram Eldar, Mar 08 2025
-
SageMath
def isA369118(n): return (n > 1 and is_odd(n) and all(is_odd(f[1]) and is_prime(f[1]) for f in factor(n))) print([n for n in range(1, 300000) if isA369118(n)])
Formula
Sum_{n>=1} 1/a(n) = -1 + Product_{prime >= 3} (1 + Sum_{prime q >= 3} 1/p^q) = 0.05534030537711484966... . - Amiram Eldar, Mar 08 2025
Comments