cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369134 Triangle read by rows: T(n, k) = (-1)^(n + 1)*L(n) * M(n, k) where M is the inverse of the matrix generated by the triangle A368846 and L(n) is the lcm of the denominators of the terms in the n-th row of M.

Original entry on oeis.org

-1, 0, 1, 0, 0, -1, 0, 0, 7, 3, 0, 0, -14, -6, -1, 0, 0, 693, 297, 55, 5, 0, 0, -30030, -12870, -2431, -260, -15, 0, 0, 4150146, 1778634, 337480, 37310, 2625, 105, 0, 0, -21441420, -9189180, -1745458, -194480, -14280, -714, -21
Offset: 0

Views

Author

Peter Luschny, Jan 14 2024

Keywords

Comments

As has been observed by T. Curtright, the absolute value of the nonzero terms in row n of the triangle is monotonically decreasing, and the absolute value of each nonzero term T(n, k) is greater than the sum of the absolute value of the terms in the tail of that row.
The sum of the n-th row divided by the lcm of the n-th row of A368848 is the Bernoulli number B(2*n).

Examples

			[0] [-1]
[1] [0, 1]
[2] [0, 0,        -1]
[3] [0, 0,         7,        3]
[4] [0, 0,       -14,       -6,       -1]
[5] [0, 0,       693,      297,       55,       5]
[6] [0, 0,    -30030,   -12870,    -2431,    -260,    -15]
[7] [0, 0,   4150146,  1778634,   337480,   37310,   2625,  105]
[8] [0, 0, -21441420, -9189180, -1745458, -194480, -14280, -714, -21]
.
For n = 5:
(0 + 0 + 693 + 297 + 55 + 5) / 13860 = 5 / 66 = Bernoulli(10).
		

Crossrefs

Cf. A368846, A368848, A369135, A369120 (row sums), A369121 (T(n,n)), A369122 (T(n,2)), A000367/A002445 (Bernoulli(2n)).

Programs

  • Mathematica
    A368846[n_, k_] := If[k == 0, Boole[n == 0], (-1)^(n + k) 2 Binomial[2 k - 1, n] Binomial[2 n + 1, 2 k]];
    Map[# LCM @@ Denominator[#]&, MapIndexed[(-1)^First[#2] Take[#, First[#2]]&, Inverse[PadRight[Table[A368846[n, k], {n, 0, 10}, {k, 0, n}]]]]] (* Paolo Xausa, Jan 15 2024 *)
  • SageMath
    M = matrix(ZZ, 32, 32, A368846).inverse()
    def T(n, k):
        L = (-1)**(n + 1)*lcm(M[n][k].denominator() for k in range(n + 1))
        return L * M[n][k]
    for n in range(9):
        print([T(n, k) for k in range(n + 1)])

Formula

(Sum_{k=0..n} T(n, k)) / A369135(n) = Bernoulli(2*n).
T(n, 2) / T(n, 3) = 7 / 3 for n >= 3.