This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369140 #12 Feb 02 2024 16:11:20 %S A369140 1,1,4,23,193,2133,29410,486602,9395315,207341153,5147194204, %T A369140 141939786588,4304047703755,142317774817901,5095781837539766, %U A369140 196403997108015332,8106948166404074281,356781439557643998591,16675999433772328981216,824952192369049982670686 %N A369140 Number of labeled loop-graphs covering {1..n} such that it is possible to choose a different vertex from each edge (choosable). %C A369140 These are covering loop-graphs where every connected component has a number of edges less than or equal to the number of vertices in that component. Also covering loop-graphs with at most one cycle (unicyclic) in each connected component. %H A369140 Andrew Howroyd, <a href="/A369140/b369140.txt">Table of n, a(n) for n = 0..200</a> %F A369140 Inverse binomial transform of A368927. %F A369140 Exponential transform of A369197. %F A369140 E.g.f.: exp(-x)*exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - _Andrew Howroyd_, Feb 02 2024 %e A369140 The a(0) = 1 through a(3) = 23 loop-graphs (loops shown as singletons): %e A369140 {} {{1}} {{1,2}} {{1},{2,3}} %e A369140 {{1},{2}} {{2},{1,3}} %e A369140 {{1},{1,2}} {{3},{1,2}} %e A369140 {{2},{1,2}} {{1,2},{1,3}} %e A369140 {{1,2},{2,3}} %e A369140 {{1},{2},{3}} %e A369140 {{1,3},{2,3}} %e A369140 {{1},{2},{1,3}} %e A369140 {{1},{2},{2,3}} %e A369140 {{1},{3},{1,2}} %e A369140 {{1},{3},{2,3}} %e A369140 {{2},{3},{1,2}} %e A369140 {{2},{3},{1,3}} %e A369140 {{1},{1,2},{1,3}} %e A369140 {{1},{1,2},{2,3}} %e A369140 {{1},{1,3},{2,3}} %e A369140 {{2},{1,2},{1,3}} %e A369140 {{2},{1,2},{2,3}} %e A369140 {{2},{1,3},{2,3}} %e A369140 {{3},{1,2},{1,3}} %e A369140 {{3},{1,2},{2,3}} %e A369140 {{3},{1,3},{2,3}} %e A369140 {{1,2},{1,3},{2,3}} %t A369140 Table[Length[Select[Subsets[Subsets[Range[n], {1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5}] %o A369140 (PARI) seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(-x + 3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ _Andrew Howroyd_, Feb 02 2024 %Y A369140 For a unique choice we have A000272, covering case of A088957. %Y A369140 Without the choice condition we have A322661, unlabeled A322700. %Y A369140 For exactly n edges we have A333331 (maybe), complement A368596. %Y A369140 The case without loops is A367869, covering case of A133686. %Y A369140 This is the covering case of A368927. %Y A369140 The complement is counted by A369142, covering case of A369141. %Y A369140 The unlabeled version is the first differences of A369145. %Y A369140 A000085, A100861, A111924 count set partitions into singletons or pairs. %Y A369140 A006125 counts simple graphs; also loop-graphs if shifted left. %Y A369140 A006129 counts covering graphs, unlabeled A002494. %Y A369140 A054548 counts graphs covering n vertices with k edges, with loops A369199. %Y A369140 A367862 counts graphs with n vertices and n edges, covering A367863. %Y A369140 Cf. A000169, A000666, A003465, A006649, A062740, A116508, A137916, A368924, A368984, A369194. %K A369140 nonn %O A369140 0,3 %A A369140 _Gus Wiseman_, Jan 20 2024 %E A369140 a(6) onwards from _Andrew Howroyd_, Feb 02 2024