This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369142 #10 Feb 02 2024 18:35:31 %S A369142 0,0,1,22,616,26084,1885323,253923163,66619551326,34575180977552, %T A369142 35680008747431929,73392583275070667841,301348381377662031986734, %U A369142 2471956814761854578316988092,40530184362443276558060719358471,1328619783326799871747200601484790193 %N A369142 Number of labeled loop-graphs covering {1..n} such that it is not possible to choose a different vertex from each edge (non-choosable). %C A369142 Also labeled loop-graphs covering n vertices with at least one connected component containing more edges than vertices. %H A369142 Andrew Howroyd, <a href="/A369142/b369142.txt">Table of n, a(n) for n = 0..50</a> %F A369142 Inverse binomial transform of A369141. %F A369142 a(n) = A322661(n) - A369140(n). - _Andrew Howroyd_, Feb 02 2024 %e A369142 The a(0) = 0 through a(3) = 22 loop-graphs (loops shown as singletons): %e A369142 . . {{1},{2},{1,2}} {{1},{2},{3},{1,2}} %e A369142 {{1},{2},{3},{1,3}} %e A369142 {{1},{2},{3},{2,3}} %e A369142 {{1},{2},{1,2},{1,3}} %e A369142 {{1},{2},{1,2},{2,3}} %e A369142 {{1},{2},{1,3},{2,3}} %e A369142 {{1},{3},{1,2},{1,3}} %e A369142 {{1},{3},{1,2},{2,3}} %e A369142 {{1},{3},{1,3},{2,3}} %e A369142 {{2},{3},{1,2},{1,3}} %e A369142 {{2},{3},{1,2},{2,3}} %e A369142 {{2},{3},{1,3},{2,3}} %e A369142 {{1},{1,2},{1,3},{2,3}} %e A369142 {{2},{1,2},{1,3},{2,3}} %e A369142 {{3},{1,2},{1,3},{2,3}} %e A369142 {{1},{2},{3},{1,2},{1,3}} %e A369142 {{1},{2},{3},{1,2},{2,3}} %e A369142 {{1},{2},{3},{1,3},{2,3}} %e A369142 {{1},{2},{1,2},{1,3},{2,3}} %e A369142 {{1},{3},{1,2},{1,3},{2,3}} %e A369142 {{2},{3},{1,2},{1,3},{2,3}} %e A369142 {{1},{2},{3},{1,2},{1,3},{2,3}} %t A369142 Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}] %Y A369142 The version for a unique choice is A000272, unlabeled A000055. %Y A369142 Without the choice condition we have A006125, unlabeled A000088. %Y A369142 The case without loops is A367868, covering case of A367867. %Y A369142 For exactly n edges we have A368730, covering case of A368596. %Y A369142 The complement is counted by A369140, covering case of A368927. %Y A369142 This is the covering case of A369141. %Y A369142 For n edges and no loops we have A369144, covering A369143. %Y A369142 The unlabeled version is A369147, covering case of A369146. %Y A369142 A000085, A100861, A111924 count set partitions into singletons or pairs. %Y A369142 A006129 counts covering graphs, unlabeled A002494. %Y A369142 A054548 counts graphs covering n vertices with k edges, with loops A369199. %Y A369142 A129271 counts connected choosable graphs, unlabeled A005703. %Y A369142 A133686 counts choosable graphs, covering A367869. %Y A369142 A322661 counts covering loop-graphs, connected A062740, unlabeled A322700. %Y A369142 A367902 counts choosable set-systems, complement A367903. %Y A369142 Cf. A000666, A003465, A006649, A116508, A137916, A333331, A368600, A368924, A368984, A369145, A369194. %K A369142 nonn %O A369142 0,4 %A A369142 _Gus Wiseman_, Jan 20 2024 %E A369142 a(6) onwards from _Andrew Howroyd_, Feb 02 2024