This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369145 #10 Feb 02 2024 16:11:53 %S A369145 1,2,5,12,30,73,185,467,1207,3147,8329,22245,60071,163462,448277, %T A369145 1236913,3432327,9569352,26792706,75288346,212249873,600069431, %U A369145 1700826842,4831722294,13754016792,39224295915,112048279650,320563736148,918388655873,2634460759783,7566000947867 %N A369145 Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable). %C A369145 a(n) is the number of graphs with loops on n unlabeled vertices with every connected component having no more edges than vertices. - _Andrew Howroyd_, Feb 02 2024 %H A369145 Andrew Howroyd, <a href="/A369145/b369145.txt">Table of n, a(n) for n = 0..500</a> %F A369145 Partial sums of A369200. %F A369145 Euler transform of A369289. - _Andrew Howroyd_, Feb 02 2024 %e A369145 The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons): %e A369145 {} {} {} {} %e A369145 {{1}} {{1}} {{1}} %e A369145 {{1,2}} {{1,2}} %e A369145 {{1},{2}} {{1},{2}} %e A369145 {{1},{1,2}} {{1},{1,2}} %e A369145 {{1},{2,3}} %e A369145 {{1,2},{1,3}} %e A369145 {{1},{2},{3}} %e A369145 {{1},{2},{1,3}} %e A369145 {{1},{1,2},{1,3}} %e A369145 {{1},{1,2},{2,3}} %e A369145 {{1,2},{1,3},{2,3}} %t A369145 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; %t A369145 Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}] %Y A369145 Without the choice condition we get A000666, labeled A006125 (shifted left). %Y A369145 The case of a unique choice is A087803, labeled A088957. %Y A369145 Without loops we have A134964, labeled A133686 (covering A367869). %Y A369145 For exactly n edges and no loops we have A137917, labeled A137916. %Y A369145 The labeled version is A368927, covering A369140. %Y A369145 The labeled complement is A369141, covering A369142. %Y A369145 For exactly n edges we have A368984, labeled A333331 (maybe). %Y A369145 The complement for exactly n edges is A368835, labeled A368596. %Y A369145 The complement is counted by A369146, labeled A369141 (covering A369142). %Y A369145 The covering case is A369200. %Y A369145 The complement for exactly n edges and no loops is A369201, labeled A369143. %Y A369145 A000085, A100861, A111924 count set partitions into singletons or pairs. %Y A369145 A006129 counts covering graphs, unlabeled A002494. %Y A369145 A054548 counts graphs covering n vertices with k edges, with loops A369199. %Y A369145 A129271 counts connected choosable simple graphs, unlabeled A005703. %Y A369145 A322661 counts labeled covering loop-graphs, unlabeled A322700. %Y A369145 A367867 counts non-choosable labeled graphs, covering A367868. %Y A369145 A368927 counts choosable labeled loop-graphs, covering A369140. %Y A369145 Cf. A000088, A006649, A062740, A140638, A368924, A369194. %K A369145 nonn %O A369145 0,2 %A A369145 _Gus Wiseman_, Jan 22 2024 %E A369145 a(7) onwards from _Andrew Howroyd_, Feb 02 2024