cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369146 Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

This page as a plain text file.
%I A369146 #17 Apr 03 2024 03:11:31
%S A369146 0,0,1,8,60,471,4911,78797,2207405,113740613,10926218807,
%T A369146 1956363413115,652335084532025,405402273420833338,
%U A369146 470568642161119515627,1023063423471189429817807,4178849203082023236054797465,32168008290073542372004072630072,468053896898117580623237189882068990
%N A369146 Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
%H A369146 Andrew Howroyd, <a href="/A369146/b369146.txt">Table of n, a(n) for n = 0..50</a>
%F A369146 Partial sums of A369147.
%F A369146 a(n) = A000666(n) - A369145(n). - _Andrew Howroyd_, Feb 02 2024
%e A369146 The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons):
%e A369146   .  .  {{1},{2},{1,2}}  {{1},{2},{1,2}}
%e A369146                          {{1},{2},{3},{1,2}}
%e A369146                          {{1},{2},{1,2},{1,3}}
%e A369146                          {{1},{2},{1,3},{2,3}}
%e A369146                          {{1},{1,2},{1,3},{2,3}}
%e A369146                          {{1},{2},{3},{1,2},{1,3}}
%e A369146                          {{1},{2},{1,2},{1,3},{2,3}}
%e A369146                          {{1},{2},{3},{1,2},{1,3},{2,3}}
%t A369146 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
%t A369146 Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]
%Y A369146 Without the choice condition we have A000666, labeled A006125 (shifted).
%Y A369146 For a unique choice we have A087803, labeled A088957.
%Y A369146 The case without loops is A140637, labeled A367867 (covering A367868).
%Y A369146 For exactly n edges we have A368835, labeled A368596.
%Y A369146 The labeled complement is A368927, covering A369140.
%Y A369146 The labeled version is A369141, covering A369142.
%Y A369146 The complement is counted by A369145, covering A369200.
%Y A369146 The covering case is A369147.
%Y A369146 A000085, A100861, A111924 count set partitions into singletons or pairs.
%Y A369146 A007716 counts non-isomorphic multiset partitions, connected A007718.
%Y A369146 A129271 counts connected choosable simple graphs, unlabeled A005703.
%Y A369146 A322661 counts labeled covering loop-graphs, unlabeled A322700.
%Y A369146 Cf. A000088, A000612, A006649, A062740, A134964, A137917, A140638, A368600, A368984, A369199.
%K A369146 nonn
%O A369146 0,4
%A A369146 _Gus Wiseman_, Jan 22 2024
%E A369146 a(6) onwards from _Andrew Howroyd_, Feb 02 2024