This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369147 #9 Feb 02 2024 16:11:25 %S A369147 0,0,1,7,52,411,4440,73886,2128608,111533208,10812478194, %T A369147 1945437194308,650378721118910,404749938336301313, %U A369147 470163239887698682289,1022592854829028310302180,4177826139658552046624979658,32163829440870460348768017832607,468021728889827507080865185809438918 %N A369147 Number of unlabeled loop-graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable). %H A369147 Andrew Howroyd, <a href="/A369147/b369147.txt">Table of n, a(n) for n = 0..50</a> %H A369147 Gus Wiseman, <a href="/A369147/a369147.png">The a(3) = 7 unlabeled non-choosable loop-graphs</a>. %F A369147 First differences of A369146. %F A369147 a(n) = A322700(n) - A369200(n). - _Andrew Howroyd_, Feb 02 2024 %e A369147 The a(0) = 0 through a(3) = 7 loop-graphs (loops shown as singletons): %e A369147 . . {{1},{2},{1,2}} {{1},{2},{3},{1,2}} %e A369147 {{1},{2},{1,2},{1,3}} %e A369147 {{1},{2},{1,3},{2,3}} %e A369147 {{1},{1,2},{1,3},{2,3}} %e A369147 {{1},{2},{3},{1,2},{1,3}} %e A369147 {{1},{2},{1,2},{1,3},{2,3}} %e A369147 {{1},{2},{3},{1,2},{1,3},{2,3}} %t A369147 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]]; %t A369147 Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,4}] %Y A369147 Without the choice condition we have A322700, labeled A322661. %Y A369147 The complement for exactly n edges is A368984, labeled A333331 (maybe). %Y A369147 The labeled complement is A369140, covering case of A368927. %Y A369147 The labeled version is A369142, covering case of A369141. %Y A369147 This is the covering case of A369146. %Y A369147 The complement is counted by A369200, covering case of A369145. %Y A369147 Without loops we have A369202, covering case of A140637. %Y A369147 A000085, A100861, A111924 count set partitions into singletons or pairs. %Y A369147 A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left). %Y A369147 A002494 counts unlabeled covering graphs, labeled A006129. %Y A369147 A007716 counts non-isomorphic multiset partitions, connected A007718. %Y A369147 Cf. A000088, A000612, A005703, A055621, A062740, A134964, A137917, A140638, A367868, A368835, A369199. %K A369147 nonn %O A369147 0,4 %A A369147 _Gus Wiseman_, Jan 23 2024 %E A369147 a(6) onwards from _Andrew Howroyd_, Feb 02 2024